In this paper we describe simple identification and signature schemes which enable any user to prove his identity and the authenticity of his messages to any other user without shared or public keys. The schemes are provably secure against any known or chosen message attack if factoring is difficult, and typical implementations require only 1% to 4% of the number of modular multiplications required by the RSA scheme. Due to their simplicity, security and speed, these schemes are ideally suited for microprocessor-based devices such as smart cards, personal computers, and remote control systems. 1) Authentication schemes: A can prove to B that he is A , but someone else cannot prove to B that he is A. 2) Identification schemes: A can prove to B that he is A , but B cannot prove to someone 3) Signature schemes: A can prove to B that he is A , but B cannot prove even to himself Authentication schemes are useful only against external threats when A a n d B cooperate. The distinction between identification and signature schemes is subtle, and manifests itself mainly when the proof is interactive and the verifier later wants to prove its existence to a judge: In identification schemes B can create a credible transcript of an imaginary communication by carefully choosing both the questions and the answers in the dialog, while in signature schemes only real communication with A could generate a credible transcript. However, in many commercial and military applications the main problem is to detect forgeries in real time and to deny the service,
Abstract. We introduce new theoretical measures for the qualitative and quantitative assessment of encryption schemes designed for broadcast transmissions. The goal is to allow a central broadcast site to broadcast secure transmissions to an arbitrary set of recipients while minimizing key management related transmissions. We present several schemes that allow a center to broadcast a secret to any subset of privileged users out of a universe of size n so that coalitions of k users not in the privileged set cannot learn the secret. The most interesting scheme requires every user to store O( k log k log n) keys and the center to broadcast O(k2 log' k log n) messages regardless of the size of the privileged set. This scheme is resilient to any coalition of k users. We also present a scheme that is resilient with probability p against a random subset of k users. This scheme requires every user to store O(1og k log(l/p)) keys and the center to broadcast O(k log2 k log( l/p)) messages.
c to 1) map from the second argument onto the range.Alice has a bank account numbered u and the bank keeps a counter v associated with it. Let @ denote bitwise exclusive or and 11 denote concatenation.To get an electronic coin, Alice conducts the following protocol with the bank:
Computing driving directions has motivated many shortest path heuristics that answer queries on continental scale networks, with tens of millions of intersections, literally instantly, and with very low storage overhead. In this paper we complement the experimental evidence with the first rigorous proofs of efficiency for many of the heuristics suggested over the past decade. We introduce the notion of highway dimension and show how low highway dimension gives a unified explanation for several seemingly different algorithms. 782
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.