Abstract.A multi-view gait recognition method using recovered static body parameters of subjects is presented; we refer to these parameters as activity-specific biometrics. Our data consists of 18 subjects walking at both an angled and frontal-parallel view with respect to the camera. When only considering data from a single view, subjects are easily discriminated; however, discrimination decreases when data across views are considered. To compare between views, we use ground truth motioncapture data of a reference subject to find scale factors that can transform data from different views into a common frame ("walking-space"). Instead of reporting percent correct from a limited database, we report our results using an expected confusion metric that allows us to predict how our static body parameters filter identity in a large population: lower confusion yields higher expected discrimination power. We show that using motion-capture data to adjust vision data of different views to a common reference frame, we can get achieve expected confusions rates on the order of 6%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.