We study the verification problem in distributed networks, stated as follows. Let H be a subgraph of a network G where each vertex of G knows which edges incident on it are in H. We would like to verify whether H has some properties, e.g., if it is a tree or if it is connected. We would like to perform this verification in a decentralized fashion via a distributed algorithm. The time complexity of verification is measured as the number of rounds of distributed communication.In this paper we initiate a systematic study of distributed verification, and give almost tight lower bounds on the running time of distributed verification algorithms for many fundamental problems such as connectivity, spanning connected subgraph, and s − t cut verification. We then show applications of these results in deriving strong unconditional time lower bounds on the hardness of distributed approximation for many classical optimization problems including minimum spanning tree, shortest paths, and minimum cut. Many of these results are the first non-trivial lower bounds for both exact and approximate distributed computation and they resolve previous open questions. Moreover, our unconditional lower bound of approximating minimum spanning tree (MST) subsumes and improves upon the previous hardness of approximation bound of Elkin [STOC 2004] as well as the lower bound for (exact) MST computation of Peleg and Rubinovich [FOCS 1999]. Our result implies that there can be no distributed approximation algorithm for MST that is significantly faster than the current exact algorithm, for any approximation factor.Our lower bound proofs show an interesting connection between communication complexity and distributed computing which turns out to be useful in establishing the time complexity of exact and approximate distributed computation of many problems.
This paper addresses the problem of locally verifying global properties. Several natural questions are studied, such as "how expensive is local verification?" and more specifically, "how expensive is local verification compared to computation?" A suitable model is introduced in which these questions are studied in terms of the number of bits a vertex needs to communicate. The model includes the definition of a proof labeling scheme (a pair of algorithmsone to assign the labels, and one to use them to verify that the global property holds). In addition, approaches are presented for the efficient construction of schemes, and upper and lower bounds are established on the bit complexity of schemes for multiple basic problems. The paper also studies the role and cost of unique identities in terms of impossibility and complexity, in the context of proof labeling schemes. Previous studies on related questions deal with distributed algorithms that simultaneously compute a configuration and verify that this configuration has a certain desired property. It turns out that this combined approach enables the verification to be less costly sometimes, since the configuration is typically generated so as to be easily verifiable. In contrast, our approach separates the configuration design from the verification. That is, it first generates the desired configuration without bothering with the need to verify it, and then handles the task of constructing a suitable verification scheme. Our approach thus allows for a more modular design of algorithms, and has the potential to aid in verifying properties even when the original design of the structures for maintaining them was done without verification in mind.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.