In many communication situations, the transmitter and the receiver must be designed without a complete knowledge of the probability law governing the channel over which transmission takes place. Various models for such channels and their corresponding capacities are surveyed. Special emphasis is placed on the encoders and decoders which enable reliable communication over these channels. Index Terms-Arbitrarily varying channel, compound channel, deterministic code, finite-state channel, Gaussian arbitrarily varying channel, jamming, MMI decoder, multiple-access channel, randomized code, robustness, typicality decoder, universal decoder, wireless.
New upper and lower bounds are presented on the capacity of the freespace optical intensity channel. This channel is characterized by inputs that are nonnegative (representing the transmitted optical intensity) and by outputs that are corrupted by additive white Gaussian noise (because in free space the disturbances arise from many independent sources). Due to battery and safety reasons the inputs are simultaneously constrained in both their average and peak power. For a fixed ratio of the average power to the peak power the difference between the upper and the lower bounds tends to zero as the average power tends to infinity, and the ratio of the upper and lower bounds tends to one as the average power tends to zero.The case where only an average-power constraint is imposed on the input is treated separately. In this case, the difference of the upper and lower bound tends to 0 as the average power tends to infinity, and their ratio tends to a constant as the power tends to zero.
Abstract-We consider a peak-power-limited single-antenna flat complex-Gaussian fading channel where the receiver and transmitter, while fully cognizant of the distribution of the fading process, have no knowledge of its realization. Upper and lower bounds on channel capacity are derived, with special emphasis on tightness in the high signal-to-noise ratio (SNR) regime. Necessary and sufficient conditions (in terms of the autocorrelation of the fading process) are derived for capacity to grow double-logarithmically in the SNR. For cases in which capacity increases logarithmically in the SNR, we provide an expression for the "pre-log," i.e., for the asymptotic ratio between channel capacity and the logarithm of the SNR. This ratio is given by the Lebesgue measure of the set of harmonics where the spectral density of the fading process is zero. We finally demonstrate that the asymptotic dependence of channel capacity on the SNR need not be limited to logarithmic or double-logarithmic behaviors. We exhibit power spectra for which capacity grows as a fractional power of the logarithm of the SNR.
Abstract-New upper and lower bounds are presented on the capacity of the free-space optical intensity channel. This channel is characterized by inputs that are nonnegative (representing the transmitted optical intensity) and by outputs that are corrupted by additive white Gaussian noise (because in free space the disturbances arise from many independent sources). Due to battery and safety reasons the inputs are simultaneously constrained in both their average and peak power. For a fixed ratio of the average power to the peak power the difference between the upper and the lower bounds tends to zero as the average power tends to infinity, and the ratio of the upper and lower bounds tends to one as the average power tends to zero.The case where only an average-power constraint is imposed on the input is treated separately. In this case, the difference of the upper and lower bound tends to 0 as the average power tends to infinity, and their ratio tends to a constant as the power tends to zero.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.