A sensitive voltammetric method for detection of trace heavy metal ions using chemically modified carbon nanotubes (CNTs) electrode surfaces is described. The CNTs were covalently modified with cysteine prior to casting on electrode surfaces. Cysteine is an amino acid with high affinities towards some heavy metals. In this assay, heavy metals ions accumulated on the cysteine-modified CNT electrode surfaces prior to being subjected to differential pulse anodic stripping voltammetry analysis. The resulting peak currents were linearly related to the concentrations of the metal ions. The method was optimized with respect to accumulation time, reduction time and reduction potential. The detection limits were found to be 1 ppb and 15 ppb for Pb 2þ and Cu 2þ respectively. The technique was used for the detection of Pb 2þ and Cu 2þ in spiked lake water. The average recoveries of Pb 2þ and Cu 2þ were 96.2% and 94.5% with relative standard deviations of 8.43% and 7.53% respectively. The potential for simultaneous detection of heavy metal ions by the modified CNTs was also demonstrated.
Reversible, catalytic films of poly(4-vinylpyridine)-Ru(bpy)2(2+) [PVP-Ru(bpy)2(2+), bpy = 2,2'-bipyridine] on pyrolytic graphite (PG) electrodes were evaluated for the detection of damage to double-stranded (ds) DNA by using square wave voltammetry (SWV). Damage of both calf thymus and salmon testes ds-DNA in solution was induced by incubation of DNA at 37 degrees C with styrene oxide, the liver metabolite of styrene, and a suspected carcinogen. Both types of ds-DNA incubated in solution with saturated styrene oxide gave a linear increase in catalytic peak current up to 30 min, and an estimate of two damaged DNA bases in one thousand could be detected. The increase in catalytic current is attributed to better access of the catalyst redox sites to oxidizable bases in the damaged, partly unwound DNA. A self-contained "toxicity sensor" was also evaluated, which consisted of films of [PVP-Ru(bpy)2(2+)] on PG electrodes coated with films of ds-DNA and polydiallyldimethylammonium polycations assembled layer-by-layer. These films also gave an increase in catalytic peak current upon incubation in saturated styrene oxide, and an estimate of 1 damaged base in 1000 could be detected. Control films or solutions of ds-DNA treated in buffer or buffer containing unreactive toluene resulted in no significant changes in the catalytic peak current with incubation time.
Films containing [Os(bpy) 2 (PVP) 10 Cl] + and [Ru(bpy) 2 -(PVP) 10 Cl] + metallopolymers were assembled layer by layer on pyrolytic graphite electrodes to make sensors that selectively detect oxidized DNA. These films showed reversible, independent electrochemistry for electroactive Os 3+ /Os 2+ and Ru 3+ /Ru 2+ centers, with formal potentials of 0.34 and 0.76 V vs SCE, respectively. The combination of ruthenium and osmium metallopolymers in the films provided a catalytic Os square wave voltammetry (SWV) peak that is mainly selective for 8-oxoguanine and the detection of other oxidized nucleobases from the Ru peak. The method is applicable to measurements on DNA in solution or DNA incorporated into films. Using the Os SWV peak, 1 oxidized nucleobase in 6000 was detected. The sensor is simple and inexpensive, and the approach may be useful for the detection of oxidized DNA as a clinical biomarker for oxidative stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.