Pancreatic ductal adenocarcinoma (PDA) represents an unmet therapeutic challenge. PDA is addicted to the activity of the mutated KRAS oncogene which is considered so far an undruggable therapeutic target. We propose an approach to target KRAS effectively in patients using RNA interference. To meet this challenge, we have developed a local prolonged siRNA delivery system (Local Drug EluteR, LODER) shedding siRNA against the mutated KRAS (siG12D LODER). The siG12D LODER was assessed for its structural, release, and delivery properties in vitro and in vivo. The effect of the siG12D LODER on tumor growth was assessed in s.c. and orthotopic mouse models. KRAS silencing effect was further assessed on the KRAS downstream signaling pathway. The LODER-encapsulated siRNA was stable and active in vivo for 155 d. Treatment of PDA cells with siG12D LODER resulted in a significant decrease in KRAS levels, leading to inhibition of proliferation and epithelial-mesenchymal transition. In vivo, siG12D LODER impeded the growth of human pancreatic tumor cells and prolonged mouse survival. We report a reproducible and safe delivery platform based on a miniature biodegradable polymeric matrix, for the controlled and prolonged delivery of siRNA. This technology provides the following advantages: (i) siRNA is protected from degradation; (ii) the siRNA is slowly released locally within the tumor for prolonged periods; and (iii) the siG12D LODER elicits a therapeutic effect, thereby demonstrating that mutated KRAS is indeed a druggable target.targeted therapy | gene therapy P ancreatic cancer is an aggressive disease that develops in a relatively symptom-free manner and in most cases, is already advanced at the time of diagnosis (1). It has one of the highest fatality rates of all cancers and is one of the leading causes of cancer-related deaths in the Western world (1, 2). Pancreatic ductal adenocarcinoma (PDA) is the most common pancreatic neoplasm, responsible for 95% of pancreatic cancer cases (3). Genetic alterations in the KRAS signaling pathway are involved in over 90% of pancreatic cancer cases (4-6). KRAS mutations were shown to be an early event in the development of pancreatic cancer (5,7,8).The most common KRAS mutation of the human pancreas adenocarcinoma is a gain-of-function substitution mutation of glycine at codon 12 to aspartate (G12D) (5, 9-11). Moreover, PDA cancer cell growth was shown to be dependent on the activity of the mutated KRAS (5, 11) and accordingly, silencing KRAS has proven effective in controlling pancreatic cell line proliferation (12). Here, we aimed to harness the advantages of siRNA technology as a therapeutic modality for pancreatic cancer.Parenteral controlled drug delivery systems are used to improve and advance the therapeutic effects of drug treatments by providing optimized local drug concentrations over prolonged periods of time, reduction of side effects, and cost reduction (13). A prominent method of controlling the release rate of a drug in a pharmaceutical dosage is to embed the active ag...
PurposeThe miniature biodegradable implant siG12D-LODER™ was inserted into a tumor and released a siRNA drug against KRAS(G12D) along four months. This novel siRNA based drug was studied, in combination with chemotherapy, as targeted therapy for Locally Advanced Pancreatic Cancer (LAPC).MethodsAn open-label Phase 1/2a study in the first-line setting of patients with non-operable LAPC was initiated. In this study patients were assigned to receive a single dose of siG12D-LODERs, in three escalating dose cohorts (0.025mg, 0.75mg and 3.0mg). Gemcitabine was given on a weekly basis, following the siG12D-LODERTM insertion, until disease progression. The recommended dose was further examined with modified FOLFIRINOX. The follow up period was eight weeks and survival until death.ResultsFifteen patients with LAPC were enrolled. Among the 15 treated patients, the most frequent adverse events observed were grade 1or 2 in severity (89%); five patients experienced serious adverse events (SAEs). In 12 patients analyzed by CT scans, none showed tumor progression, the majority (10/12) demonstrated stable disease and two showed partial response. Decrease in tumor marker CA19-9 was observed in 70% (7/10) of patients. Median overall survival was 15.12 months; 18 month survival was 38.5%.ConclusionsThe combination of siG12D-LODER™ and chemotherapy is well tolerated, safe and demonstrated a potential efficacy in patients with LAPC. NCT01188785
Conventional chemotherapy treatments for pancreatic cancer are mainly palliative. RNA interference (RNAi)-based drugs present the potential for a new targeted treatment. LOcal Drug EluteR (LODER(TM)) is a novel biodegradable polymeric matrix that shields drugs against enzymatic degradation and releases small interfering RNA (siRNA) against G12D-mutated KRAS (siG12D). siG12D-LODER has successfully passed a phase 1/2a clinical trial. Such a formulation necessitates biocompatibility and safety studies. We describe the safety and toxicity studies with siG12D-LODER in 192 Hsd:Sprague Dawley rats, after repeated subcutaneous administrations (days 1, 14, and 28). Animals were sacrificed on days 29 and 42 (recovery phase). In all groups, no adverse effects were noted, and all animals showed favorable local and systemic tolerability. Histopathologically, LODER implantation resulted in the expected capsule formation, composed of a thin fibrotic tissue. On the interface between the cavity and the capsule, a single layer composed of macrophages and multinucleated giant cells was observed. No difference was noted between the placebo and siG12D-LODER groups. These findings provide valuable information for future preclinical studies with siRNA-bearing biodegradable polymers and for the safety aspects of RNAi-based drugs as a targeted therapy.
TPS4672 Background: KRAS alterations are the most frequent driver alterations identified in pancreas cancer; however, KRAS has remained an elusive therapeutic target. siG12D-LODER is a novel, miniature bio-degradable polymeric matrix encompassing a novel small interfering RNA targeting KRAS G12D and all additional G12X mutations (G12C, G12V...). The siG12D-LODER is inserted directly into the pancreas tumor via endoscopic intervention. A Phase 1/2a dose escalation and expansion study of patients receiving a one-time dose of siG12D-LODER with ongoing chemotherapy demonstrated that the combination was well-tolerated and safe and exhibited promising potential efficacy with 10/12 patients achieving disease control and median overall survival 15.1 months (Golan, Oncotarget 2015). Methods: This phase 2 study was initially designed as a randomized, two arm, open label study of gemcitabine and nab-paclitaxel with or without siG12D-LODER for patients with locally advanced pancreas cancer with planned 40 patients in each arm and primary endpoint of progression-free survival. Eighteen patients were enrolled in the chemotherapy alone arm and 18 in the chemotherapy and siG12D-LODER arm. After an interim analysis, the study design has been amended and is now a single arm study in which patients (N=39) with both borderline resectable and locally advanced pancreas cancer will receive investigator’s choice of chemotherapy (the combination of gemcitabine/nab-paclitaxel or modified FOLFIRINOX) and all patients will receive up to three doses of the siG12D-LODER administered once every 12 weeks. Primary endpoint is overall response rate after final siG12D-LODER insertion. Secondary endpoints include duration of response, progression-free survival, overall survival, time to response, percentage of patients proceeding to surgical resection, and percentage of patients receiving radiation therapy. Exploratory analyses include evaluation of KRAS mutation status and monitoring of circulating free DNA and circulating tumor cells. The amended protocol is now open for accrual and four patients having been enrolled to date. Trial accrual is anticipated to be completed by December 2020. Clinical trial information: NCT01676259 .
The distribution of drugs within solid tumors presents a long-standing barrier for efficient cancer therapies. Tumors are highly resistant to diffusion, and the lack of blood and lymphatic flows suppresses convection. Prolonged, continuous intratumoral drug delivery from a miniature drug source offers an alternative to both systemic delivery and intratumoral injection. Presented here is a model of drug distribution from such a source, in a multistep process. At delivery onset the drug mainly affects the closest surroundings. Such ‘priming’ enables drug penetration to successive cell layers. Tumor ‘void volume’ (volume not occupied by cells) increases, facilitating lymphatic perfusion. The drug is then transported by hydraulic convection downstream along interstitial fluid pressure (IFP) gradients, away from the tumor core. After a week tumor cell death occurs throughout the entire tumor and IFP gradients are flattened. Then, the drug is transported mainly by ‘mixing’, powered by physiological bulk body movements. Steady state is achieved and the drug covers the entire tumor over several months. Supporting measurements are provided from the LODER™ system, releasing siRNA against mutated KRAS over months in pancreatic cancer in-vivo models. LODER™ was also successfully employed in a recent Phase 1/2 clinical trial with pancreatic cancer patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.