Extended spectrum β lactamase-producing Klebsiella pneumoniae (ESBL-KP) is being reported with high morbidity and mortality rates and is considered as the highest priority for new antimicrobial strategies. To develop an alternative antimicrobial agent, phage KP1801 with broad lytic activity was isolated. The genome of phage KP1801 was double stranded DNA of 49,835 base pairs, with a GC content of 50.26%. There were 75 putative open reading frames. Phage KP1801 was classified as being in the order Caudovirales , belonging to the Siphoviridae family. About 323 proteins were detected by shotgun proteome analysis. The phage inhibited biofilm formation and reduced pre-formed biofilm in a dose dependent manner. Scanning electron microscopic studies demonstrated a membrane damage of bacterial cells treated with phage, resulting in cell death. Prophylactic and therapeutic efficacies of the phage were evaluated in Galleria mellonella . Administration of ESBL-KP infection with phage significantly improved the survival of G. mellonella . The number of intracellular bacteria in larvae showed a significant decrease compared with untreated control while the number of phage increased. These studies suggested that phage KP1801 has the potential for development as an alternative for antibiotics and biocontrol agents against ESBL-KP infection.
Microcystis poses a concern because of its potential contribution to eutrophication and production of microcystins (MCs). Phage treatment has been proposed as a novel biocontrol method for Microcystis. Here, we isolated a lytic cyanophage named PhiMa05 with high efficiency against MCs-producing Microcystis strains. Its burst size was large, with approximately 127 phage particles/infected cell, a short latent period (1 day), and high stability to broad salinity, pH and temperature ranges. The PhiMa05 structure was composed of an icosahedral capsid (100 nm) and tail (120 nm), suggesting that the PhiMa05 belongs to the Myoviridae family. PhiMa05 inhibited both planktonic and aggregated forms of Microcystis in a concentration-dependent manner. The lysis of Microcystis resulted in a significant reduction of total MCs compared to the uninfected cells. A genome analysis revealed that PhiMa05 is a double-stranded DNA virus with a 273,876 bp genome, considered a jumbo phage. Out of 254 predicted open reading frames (ORFs), only 54 ORFs were assigned as putative functional proteins. These putative proteins are associated with DNA metabolisms, structural proteins, host lysis and auxiliary metabolic genes (AMGs), while no lysogenic, toxin and antibiotic resistance genes were observed in the genome. The AMGs harbored in the phage genome are known to be involved in energy metabolism [photosynthesis and tricarboxylic acid cycle (TCA)] and nucleotide biosynthesis genes. Their functions suggested boosting and redirecting host metabolism during viral infection. Comparative genome analysis with other phages in the database indicated that PhiMa05 is unique. Our study highlights the characteristics and genome analysis of a novel jumbo phage, PhiMa05. PhiMa05 is a potential phage for controlling Microcystis bloom and minimizing MC occurrence.
Phage treatment has been used as an alternative to antibiotics since the early 1900s. However, bacteria may acquire phage resistance quickly, limiting the use of phage treatment. The combination of genetically diverse phages displaying distinct replication machinery in phage cocktails has therefore become a novel strategy to improve therapeutic outcomes. Here, we isolated and studied lytic phages (SPA01 and SPA05) that infect a wide range of clinical Pseudomonas aeruginosa isolates. These relatively small myophages have around 93 kbp genomes with no undesirable genes, have a 30-min latent period, and reproduce a relatively high number of progenies, ranging from 218 to 240 PFU per infected cell. Even though both phages lyse their hosts within 4 h, phage-resistant bacteria emerge during the treatment. Considering SPA01-resistant bacteria cross-resist phage SPA05 and vice versa, combining SPA01 and SPA05 for a cocktail would be ineffective. According to the decreased adsorption rate of the phages in the resistant isolates, one of the anti-phage mechanisms may occur through modification of phage receptors on the target cells. All resistant isolates, however, are susceptible to nucleus-forming jumbophages (PhiKZ and PhiPA3), which are genetically distinct from phages SPA01 and SPA05, suggesting that the jumbophages recognize a different receptor during phage entry. The combination of these phages with the jumbophage PhiKZ outperforms other tested combinations in terms of bactericidal activity and effectively suppresses the emergence of phage resistance. This finding reveals the effectiveness of the diverse phage-composed cocktail for reducing bacterial growth and prolonging the evolution of phage resistance.
The emergence of carbapenem-resistant Acinetobacter baumannii (CRAB) has been increasingly reported, leading to greater challenges in treating infections. With the development of phage therapy and phage-antibiotic combinations, it is promising to improve the treatment of bacterial infections. In the present study, a novel vB_AbaP_WU2001 (vWU2001) phage-specific CRAB with a genome of 40,792 bp was isolated. Genomic analysis disclosed that it belongs to the Autographiviridae family of the order Caudovirales. Phage vWU2001 had a broad host range with a high adsorption rate, short latent period, large burst size and good stability. The phage could reduce preformed biofilms and inhibit biofilm formation. The combination of phage vWU2001 and colistin had significantly higher bacterial growth inhibition activity than that of phage, or colistin alone. The efficacy of the combined treatment was also evaluated in Galleria mellonella. Evaluation of its therapeutic potential showed that the combination of phage and colistin resulted in a significantly greater increase in G. mellonella survival and in bacterial clearance, as compared with that of phage or colistin alone, indicating that the combination was synergistic against CRAB. The results demonstrated that phage vWU2001 has the potential to be developed as an antibacterial agent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.