Endothelial cell protein C receptor (EPCR) enhances the generation of activated protein C (APC) by the thrombin-thrombomodulin complex. A soluble form of EPCR (sEPCR), which is generated by metalloprotease activity, is present in plasma. The distribution of sEPCR levels in healthy populations is bimodal. Previously, we described two polymorphisms in exon 4 of the EPCR gene, 4600A/G that encodes the substitution of Ser219 by Gly in the transmembrane region of EPCR and 4678G/C in the 3'-UT region. The aim of this study was to investigate the relationship between these two polymorphisms and plasma sEPCR and APC levels and risk of venous thrombosis. We genotyped 401 healthy controls from the Spanish population and measured their plasma sEPCR and APC levels. Carriers of the 4600AG genotype had significantly higher sEPCR levels than those with the AA genotype, while the 4678CC genotype was associated, to a lesser extent, with elevated APC levels. To assess the effect of these polymorphisms on the risk of thrombosis, we genotyped 405 patients with venous thromboembolism. The frequency of the 4600AG genotype was very similar in patients and controls (p=0.975), whereas the 4678CC genotype was significantly more frequent in controls than in patients (p=0.008). In multivariate analysis, carriers of the 4678CC genotype had a decreased risk of thrombosis (OR=0.61, p=0.009). These data indicate that individuals carrying the 4600AG genotype have high sEPCR levels but do not have an increased risk of thrombosis, whereas individuals carrying the 4678CC genotype have higher APC levels and lower risk of venous thromboembolism.
The fibrinolytic system includes a broad spectrum of proteolytic enzymes with physiological and pathophysiological functions in several processes, such as haemostatic balance, tissue remodeling, tumor invasion, angiogenesis and reproduction. The main enzyme of the plasminogen activator system is plasmin, which is responsible for the degradation of fibrin into soluble degradation products. The activation of plasminogen into plasmin is mediated by two types of activators, urokinase-type plasminogen activator (uPA) and tissue-type plasminogen activator (tPA). The activity of both is regulated by specific plasminogen activator inhibitors (PAIs). There are 3 types of PAIs described so far but the most important fibrinolytic inhibitor in vivo is PAI type 1 (PAI-1). Among others, the presence of metabolic syndrome and the -675 4G/5G promoter polymorphism are known to be modulators of PAI-1 levels. Besides their fibrinolytic profile, plasmin and plasminogen activators are implicated in tissue proliferation and cellular adhesion, as they can proteolytically degrade the extracellular matrix and regulate the activation of both growth factors and matrix metalloproteinases. By all these means, the fibrinolytic system is also involved in physiological processes, and in pathological situations such as thrombosis, arteriosclerosis, endometriosis and cancer. PAI 1 has been studied in different settings with thrombotic pathophysiology, such as coronary artery disease and ischaemic stroke. Controversial results have been published and concerns about study designs or presence of confounders have been claimed to be responsible of them. Recently, its involvement in adverse thrombotic events related to the modern drug-eluting coronary stents has renewed the interest of its study. PAI-1 also plays an important role in signal transduction, cell adherence, and migration. Indeed, studies of several types of cancers, including breast cancer, have shown that increased uPA and PAI-1 levels are associated with aggressive tumor behavior and poor prognosis. Endometriosis is defined by the presence of endometrial glands and stroma outside the uterus with marked ability to attach and invade the peritoneum. It is one of the most frequent benign gynecological diseases that affect women with pelvic pain or infertility during their reproductive age. Immune system disorders, genetic predisposition, altered peritoneal environment and endometrial alterations are believed to increase the susceptibility to endometriosis. The plasminogen activator system may be involved in this process, where local extracellular proteolysis plays a crucial role. Altered expression of several components of the fibrinolytic system in both eutopic and ectopic endometrium and peritoneal fluid of women with the disease has been implicated not only in the onset, but also in the progression of the endometriotic lesions.
This work was supported by research grants from ISCIII-FEDER (PI11/0091, Red RIC RD12/0042/0029), Consellería de Educación-Generalitat Valenciana (PROMETEO/2011/027), Beca de Investigación Fundación Dexeus para la Salud de la Mujer (2011/0469), and by Fundación Investigación Hospital La Fe (2011/211). A.B-B. has a Contrato Posdoctoral de Perfeccionamiento Sara Borrell-ISCIII (CD13/00005). J.M-A. has a predoctoral grant PFIS-ISCIII (FI12/00012). The authors have no conflicts of interest to declare.
Endometrium and peritoneal fluid from women with endometriosis have increased levels of VEGF, uPA and MMP-3 levels. Therefore, the development of endometriotic implants at ectopic sites may be facilitated, promoting the progress of the endometriosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.