Mammalian telomeres consist of TTAGGG repeats organized in nucleosomes and associated with a sixprotein complex known as shelterin, which preserves telomere structure and protects chromosome ends from the cellular DNA damage response. Recent studies have found that telomeres are transcribed into telomeric UUAGGG repeat-containing RNA (TERRA) starting from subtelomeric regions. TERRA binding at telomeres appears to be involved in cis-based mechanisms of telomeric chromatin organization and maintenance. A number of histone methyltransferases (HMTs) are known to influence telomeric chromatin status; however, the regulatory mechanisms of telomere transcription are poorly understood. Here, we show that the histone 3/lysine 4 (H3/K4) HMT and the transcriptional regulator MLL associate with telomeres and contribute to their H3/K4 methylation and transcription in a telomere length-dependent manner. In human diploid fibroblasts, RNA interference-mediated MLL depletion affects telomere chromatin modification and transcription and induces the telomere damage response. Telomere uncapping through either TRF2 shelterin protein knockdown or exposure to telomere G-strand DNA oligonucleotides significantly increases the transcription of TERRA, an effect mediated by the functional cooperation between MLL and the tumor suppressor p53. In total, our findings identify a previously unrecognized role of MLL in modifying telomeric chromatin and provide evidence for the functional interaction between MLL, p53, and the shelterin complex in the regulation of telomeric transcription and stability.Telomeric chromatin consists of TTAGGG repeats organized in nucleosomes that are associated with a complex of six proteins, named shelterin, which plays a fundamental role in telomere protection and homeostasis (11). Adjacent subtelomeric chromatin is also enriched in repetitive DNA organized in nucleosomes and typically has a low gene density. Both subtelomeric and telomeric chromatins show histone modifications characteristic of heterochromatin, and subtelomeric DNA is also methylated (6). Along with DNA and histone modifications, noncoding RNA molecules are now known to play a fundamental cis-acting role in the organization and maintenance of heterochromatic structures (5). The recent discovery of the RNA polymerase II-dependent transcription of mammalian subtelomeric and telomeric DNAs into telomeric repeat-containing RNA (TERRA), RNA transcripts containing UUAGGG repeats, and the localization of TERRA at telomeres of both interphase and metaphase chromosomes suggest that these noncoding RNAs exert a cis function at telomeric chromatin (2, 37).SET domain-containing proteins with histone methyltransferase (HMT) activity are involved in telomeric chromatin modification and function. To date, Suv3-9h1, Suv3-9h2, Suv4-20h1, and Suv4-20h2 HMTs have been linked directly with telomere maintenance. Mouse embryonic fibroblasts (MEFs) null for both the Suv3-9h1 and Suv3-9h2 or Suv4-20h1 and Suv4-20h2 genes show abnormally long telomeres compared with no...
Purpose: The role of immune-oncologic mechanisms of racial disparities in prostate cancer remains understudied. Limited research exists to evaluate the molecular underpinnings of immune differences in African American men (AAM) and European American men (EAM) prostate tumor microenvironment (TME). Experimental Design: A total of 1,173 radiation-naïve radical prostatectomy samples with whole transcriptome data from the Decipher GRID registry were used. Transcriptomic expressions of 1,260 immune-specific genes were selected to assess immune-oncologic differences between AAM and EAM prostate tumors. Race-specific differential expression of genes was assessed using a rank test, and intergene correlational matrix and gene set enrichment was used for pathway analysis. Results: AAM prostate tumors have significant enrichment of major immune-oncologic pathways, including proinflammatory cytokines, IFNα, IFNγ, TNFα signaling, ILs, and epithelial–mesenchymal transition. AAM TME has higher total immune content score (ICSHIGH) compared with 0 (37.8% vs. 21.9%, P = 0.003). AAM tumors also have lower DNA damage repair and are genomically radiosensitive as compared with EAM. IFITM3 (IFN-inducible transmembrane protein 3) was one of the major proinflammatory genes overexpressed in AAM that predicted increased risk of biochemical recurrence selectively for AAM in both discovery [HRAAM = 2.30; 95% confidence interval (CI), 1.21–4.34; P = 0.01] and validation (HRAAM = 2.42; 95% CI, 1.52–3.86; P = 0.0001) but not in EAM. Conclusions: Prostate tumors of AAM manifest a unique immune repertoire and have significant enrichment of proinflammatory immune pathways that are associated with poorer outcomes. Observed immune-oncologic differences can aid in a genomically adaptive approach to treating prostate cancer in AAM.
Priming of CD8+ T cells requires presentation of short peptides bound to MHC class I molecules of professional APCs. Cross-presentation is a mechanism whereby professional APC present on their own MHC class I molecules peptides derived from degradation of Ags synthesized by other Ag “donor cells.” The mechanism of cross-presentation is poorly understood, and the nature of the transferred Ag is unknown. In this report, we demonstrate that the bulk of a cross-presented Ag transferred from donor cells recently infected with vaccinia virus are proteasomal products that are susceptible to peptidases within the donor cell cytosol and not full-length proteins or mature epitopes either free or bound to chaperones.
Castration-resistant prostate cancer (CRPC) is a lethal stage of disease in which androgen receptor (AR) signaling is persistent despite androgen deprivation therapy (ADT). Most studies have focused on investigating cell-autonomous alterations in CRPC, while the contributions of the tumor microenvironment are less well understood. Here we sought to determine the role of tumor-associated macrophages in CRPC, based upon their role in cancer progression and therapeutic resistance. In a syngeneic model that reflected the mutational landscape of CRPC, macrophage depletion resulted in a reduced transcriptional signature for steroid and bile acid synthesis, indicating potential perturbation of cholesterol metabolism. As cholesterol is the precursor of the five major types of steroid hormones, we hypothesized that macrophages were regulating androgen biosynthesis within the prostate tumor microenvironment. Macrophage depletion reduced androgen levels within prostate tumors and restricted AR nuclear localization in vitro and in vivo. Macrophages were also cholesterol-rich and were able to transfer cholesterol to tumor cells in vitro. AR nuclear translocation was inhibited by activation of liver X receptor (LXR)-β, the master regulator of cholesterol homeostasis. Consistent with these data, macrophage depletion extended survival during ADT and the presence of macrophages correlated with therapeutic resistance in patient-derived explants. Taken together, these findings support the therapeutic targeting of macrophages in CRPC. Significance: These results suggest that macrophage-targeted therapies can be combined with androgen deprivation therapy to treat patients with prostate cancer by limiting cholesterol bioavailability and the production of intratumoral androgens. See related commentary by Al-Janabi and Lewis, p. 5399
Acute lymphoblastic leukemia (ALLs) expressing MLL-AF4, the fusion product of t(4;11)(q21;q23), show marked leucocytosis and extramedullary disease in multiple organs, respond poorly to chemotherapy and have poor prognosis. In vitro, leukemic cells with the t(4;11) show resistance to serum deprivationinduced or interferon c-regulated CD95-mediated apoptosis. In addition, t(4;11) cells have prolonged doubling time and lower percentage of cells in cycle compared to non-t(4;11) B lineage cell lines. In this study, we examine the time-and leveldependent effects of MLL-AF4 conditional expression on cell cycle and differentiation of myelomonocytic leukemia cell line U937. By varying the concentration of tetracycline in growth media, we found that increasing levels of MLL-AF4 expression result in a progressive decrease in growth rate and fraction of S phase cells, paralleled by an increase in percentage of cells expressing CD11b. Our results demonstrate a dosage-dependent effect of MLL-AF4 fusion oncoprotein on cell cycle progression, with increasing expression levels resulting in the accumulation in G1, prolonged doubling time, both findings that might be responsible for the increased resistance to etoposide-mediated cytotoxicity. We propose the cell cycle control exerted by MLL-AF4 may be responsible of resistance to cell-death promoting stimuli in leukemia carrying the t(4;11) translocation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.