Curcumin (Ccm) and ascorbyl dipalmitate (ADP) nanoparticles (NPs) with average sizes of ∼50 and ∼80 nm, respectively, were successfully produced by rapid expansion of subcritical solutions into liquid solvents (RESOLV). Pluronic F127 was employed as a stabilizer for both Ccm- and ADP-NPs in an aqueous receiving solution. Antioxidant activities of the Ccm-NPs and ADP-NPs were subsequently investigated using four assays, including 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, ABTS radical cation decolorization, β-carotene bleaching, and ferric reducing antioxidant power. Ccm-NPs and ADP-NPs showed higher antioxidant activities than those of Ccm and ADP. Ccm-NPs yielded higher antioxidant activities than those of Ccm in ethanol and water (Ccm-EtOH and Ccm-H(2)O), respectively. ADP-NPs yielded lower antioxidant activities than that of ADP in ethanol (ADP-EtOH) but higher activities than that of ADP in water (ADP-H(2)O). Moreover, incorporation of Ccm-NPs and ADP-NPs into cellulose-based films indicated that Ccm-NPs and ADP-NPs significantly enhanced the antioxidant activities of Ccm and ADP (p < 0.05). Our results show that the environmentally benign supercritical CO(2) technique should be generally applicable to NP fabrication of other important bioactive ingredients, especially in liquid form. In addition, we suggest that Ccm-NPs and ADP-NPs can be used to reduce the dosage of Ccm and ADP and improve their bioavailability, and thus merit further investigation for antioxidant packaging film and coating applications.
The objective of this work was to investigate blend ratio and storage time effects on the morphological, mechanical, and thermal properties of thermoplastic starch/poly(butylene adipate-
co
-terephthalate) (TPS/PBAT) films. TPS was prepared from plasticized cassava starch using a twin-screw extruder. TPS was subsequently melt-blended with PBAT with varied weight ratios (i.e., 20/80, 40/60 and 60/40) and blown to form TPS/PBAT films. It was found that increasing the TPS/PBAT ratio to 40/60 led to improved distributions of polymeric components and increased PBAT crystallization temperatures while reducing TPS melting transitions and tensile properties of TPS/PBAT films.
After three months of storage at 30 °C, the tensile strength and secant modulus at 2% strain of TPS/PBAT films increased due to recrystallization of both TPS and PBAT. Blend ratios were the primary determinant for changes in TPS/PBAT film elongation at break with this storage time. Elongation at break decreased at low TPS:PBAT ratios (i.e., 20/80) and increased at high blend ratios (i.e., 60/40). The recrystallization of both TPS and PBAT components were observed from XRD and DSC analyses. Results obtained from both techniques confirmed the formation of additional crystalline structures of individual components during storage. The recrystallization phenomena also affected thermal transition temperatures of blend components. The crystallization temperature of PBAT-rich phase increased as starch could act as nucleating sites for PBAT. Using DMA, the
tan δ
curve of TPS/PBAT film exhibited two sharp individual peaks corresponding to the glass transitions of PBAT-rich and starch-rich phases. The
tan δ
of TPS-rich phase shifted to higher temperature due to recrystallization of TPS-rich phase.
Organic nanoparticles of a fluorinated tetraphenylporphyrin (TBTPP) were produced by rapid expansion of supercritical CO(2) solutions into both air (RESS) and an aqueous receiving solution containing a stabilizing agent (RESOLV). The effect of processing conditions on both particle size and form was investigated. The size of the porphyrin nanoparticles produced via RESS increased in a well-behaved manner from 40 to 80 nm as the preexpansion temperature increased from 40 to 100 degrees C, independent of porphyrin concentration, degree of saturation, and preexpansion pressure. RESOLV of TBTPP + CO(2) solutions was investigated both for minimizing particle growth in the free jet and for the prevention of particle agglomeration. Anionic, nonionic, and polymeric stabilizing agents for the aqueous receiving solution were considered. Expansion into a 0.05 wt % SDS solution produced nanorods 50-100 nm in diameter with an aspect ratio of 3-5. RESOLV in a 0.025 wt % Pluronic F68 solution produced well-dispersed, individual, spherical nanoparticles averaging 23 +/- 10 to 32 +/- 10 nm in diameter, independent of the rapid expansion processing conditions selected. Furthermore, the resulting nanoparticle suspensions were stable, with particle sizes remaining unchanged after several months. However, some particle agglomeration occurred at higher (i.e., 1 wt % TBTPP in CO(2)) concentrations. Contact-angle measurements on solid TBTPP compacts with the tested receiving solutions indicate that a moderate wetting agent such as Pluronic F68 is most effective for preserving the size and form of the porphyrin nanoparticles produced by RESOLV. Finally, the fact that nanoparticles are produced from RESS of TBTPP, in contrast with other organics for which microparticles are produced, can be explained in terms of the high melting point of TBTPP (388 degrees C), which results in a solid-state diffusion coefficient of TBTPP low enough so that particle coalescence is significantly reduced in the free jet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.