Performing a good-quality indoor localization of a mobile target is a challenging task, which can be affected by many factors such as radio wave behavior, the nature of the experimental environment, and available infrastructure. (1) Background: An indoor localization experiment using an Internet of Things (IoT) wireless sensor network (WSN) testbed is performed, in order to study the influence of transmission power level on the quality of received signals, and consequently, the estimated target positional coordinates. (2) Methods: A received signal strength indicator (RSSI) range-based localization system using a geometrical constrained weighted least squares (WLS) estimator multilateration technique is selected to validate the influence of the transmission power level on the performance of the localization algorithm. (3) Results: Fair localization quality was obtained at the highest transmission power level instead of the proposed transmission power level. (4) Conclusion: Additional factors are discussed to fully represent the required operational transmission power for a better localization quality, along with suggested improvements of the infrastructure configuration as a future work.
The availability of data is an important aspect of any research as it determines the likelihood of the study's commencement, completion, and success. The Internet of Things and Wireless Sensor Networks technologies have been attracting a huge amount of researchers for more than two decades, without having a consolidated or unified source, identifying and describing available Internet of Things and Wireless sensor network testbed facilities. In this paper, a dataset including 41 distinct testbed facilities is described. These testbed facilities are classified according to their key features such as Device Under Test (DUT) type, mobility, access level, facility count, connection/interaction interfaces along with other criteria. The systematic review process resulting in the gathered data set consisted of three filtering phases applied to relevant articles published between the years 2011 and 2021 as obtained from the Web of Science and SCOPUS databases.
As the popularity and complexity of WSN devices and IoT systems are increasing, the testing facilities should keep up. Yet, there is no comprehensive overview of the landscape of the testbed facilities conducted in a systematic manner. In this article, we provide a systematic review of the availability and usage of testbed facilities published in scientific literature between 2011 and 2021, including 359 articles about testbeds and identifying 32 testbed facilities. The results of the review revealed what testbed facilities are available and identified several challenges and limitations in the use of the testbed facilities, including a lack of supportive materials and limited focus on debugging capabilities. The main contribution of this article is the description of how different metrics impact the uasge of testbed facilities, the review also highlights the importance of continued research and development in this field to ensure that testbed facilities continue to meet the changing needs of the ever-evolving IoT and WSN domains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.