Fibers and bacterial additives in concrete have achieved significant success as a construction material. This paper presents the field of concrete self-repairing by introducing both Bacillus subtilis bacteria and polyethylene fiber as a dual-components. The main research goal is to reveal the principles of concrete self-repairing. At first, the research investigates the fiber-reinforced-concrete behavior, the concrete self-repairing process with the Bacillus subtilis bacteria for forming bacterial-concrete. And then, the study highlights the damage-repairing numerical simulation of fiber-reinforced-bacterial-concrete. The research shows the bacterial-concrete benefits to durability and mechanical properties besides to the polyethylene fiber assistance to enhance post-cracking tensile resistance and the pre-peak elastic modulus of concrete. The novelty of the fiber-reinforced-bacterial-concrete is the matrix combined improvement of both basic material properties and the post-cracking deflection capacity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.