At present, the results of photogrammetric processing of images obtained from UAVs (orthophoto mosaics, digital elevation models, etc.) are widely used for environmental studies. Such materials are especially relevant and in demand for environmental monitoring of hard-to-reach objects. In addition, UAV survey materials are indispensable for impact monitoring, in which observation, assessment and forecast of the state of the natural environment in areas where hazardous and potentially hazardous (NPP) sources of anthropogenic impact are located are carried out. Regardless of the method of georeferencing of images - direct or indirect - the accuracy of the generated product is evaluated by ground control points. The purpose of this study is to assess the accuracy of photogrammetric constructions depending on the number of strips when surveying linear objects from UAVs and on the number of control points used in indirect georeferencing. Five groups of experiments were carried out during the study, three in each group with a different number of strips (from one to three). Five groups are conventionally combined into two sections. In the first section, direct and indirect georeferencing techniques were used with three locally located control points. In the second section, the method of indirect georeferencing was used with a different number of ground control points: six, twelve and thirty-four. Estimates of the accuracy of various tests have shown that an increase in the number of strips does not always lead to an increase in accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.