SUMMARYThe distinction between clast-dominant, matrix-dominant and well-graded tills is important in view of the influence of texture on the definition and function of till fines. Till fabric includes a wide range of features of both primary and secondary origin including folds, thrusts, fissures (the macrofabric), disposition of clasts (the mesofabric) and organization of the matrix (the microfabric). The results of fabric analysis of pebble, granule, sand, silt and clay in small depositional landforms beneath currently-active glaciers are described. Deformation fabrics are distinguished in freshly deposited end moraines and flutes. The sand-size material in deformed till may or may not behave in the same way as larger clasts, depending on the degree to which the till is matrix-dominant. While clasts in saturated subglacial till tend to align themselves sub-parallel to the depositional surface, the matrix usually retains abundant pore spaces. With slow, unloaded drainage, clast fabrics appear to be little modified. Such material is potentially unstable and any subsequent increase in overburden and hydraulic pressures may cause slope collapse and flowtill development. It is concluded that examination of a wide range of fabric parameters provides a means of distinguishing tills of diverse origins and of assessing their potential instability.
Introduction: Zinc oxide nanoparticles (ZnONPs) are one of the most interesting metal oxide nanoparticles due to their easy functionalization, biocompatibility, and anticancer impact. The current study was designated to evaluate the in vitro and in vivo anticancer potency of biologically synthesized ZnONPs. Methods: Fenugreek seeds' extract was used to prepare ZnONPs, and then characterized by scanning electron microscope (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD), UV-V spectroscopy and transmission electron microscope (TEM). The in vitro antitumor activity of biogenic ZnONPs against different cancer cells was evaluated by MTT assay. In addition, their anticancer activities alone or in combination with Doxorubicin were investigated against EAC model using intraperitoneal injection day after day. Results: Biologically synthesized ZnONPs showed a cytotoxic potency against different cancer cell lines combined with lower toxicity against normal cells. Further, the in vivo study revealed that the treatment by ZnONPs alone or combined with doxorubicin hampered the proliferation of EAC in mice by lowering the ascetic volume and the number of viable tumor cells. Moreover, ZnONPs alone or combined with doxorubicin induced the cell cycle arrest at G0/G1 phase and apoptosis by up-regulating the expression of caspase-3 and Bax and down-regulating the expression of Bcl-2 proteins. Conclusion: Our study indicated that the biogenic ZnONPs could be instructive to future cancer treatment research.
Soil properties determination for some applications requires quick, easy and cheap method rather than using the traditional sophisticated, time consuming and expensive laboratory test methods. The use of non-disturbing test method is very much recommended to have more reliable test results. Recently, there has been a great demand towards using special techniques and apparatuses for measuring the soil properties in-situ which facilitate having more tests and covering larger area in shorter time. The electrical geophysical method is one of these techniques which allow rapid measure for soil electrical properties such as electrical resistivity, electrical conductivity and potential directly from soil surface to any depth without soil disturbance. In this research, laboratory tests were carried out on calcareous soil samples for determining their electrical resistivity after compaction. Samples were extracted from the soil formation in Ain Helwan inside Helwan University campus. Soil formation in Ain Helwan is different than the usual Nile formation in Cairo or the desert formation near to Helwan area, as it has calcareous nature. Results between electrical resistivity and compaction index were plotted and relationships were developed for soil in this site between electrical resistivity and different soil properties, water content and compaction index. The effect of fine contents on results was also discussed. Based on the obtained results it was found that the change in water content and fines content are reflected on the obtained electrical resistivity and accordingly an in-situ compaction control can be carried out by applying the electrical resistivity approach. Ó 2017 Housing and Building National Research Center. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.