The liposome, a closed phospholipid bilayered vesicular system, has received considerable attention as a pharmaceutical carrier of great potential over the past 30 years. The ability of liposomes to encapsulate both hydrophilic and hydrophobic drugs, coupled with their biocompatibility and biodegradability, make liposomes attractive vehicles in the field of drug delivery. In addition, great technical advances such as remote drug loading, triggered release liposomes, ligand-targeted liposomes, liposomes containing combinations of drugs, and so on, have led to the widespread use of liposomes in diverse areas as delivery vehicles for anticancer, bio-active molecules, diagnostics, and therapeutic agents. In this review, we summarize design optimization of liposomal systems and invaluable applications of liposomes as effective delivery systems.
PEGylation, which is the surface modification of nanocarriers with polyethylene glycol (PEG), has increased the circulation time and reduced the immunogenic responses to nanocarriers. However, many reports have demonstrated that the intravenous injection of sterically stabilized PEGylated liposome (SL) causes an accelerated blood clearance (ABC) of subsequent doses via anti-PEG immunoglobulin M (IgM)-mediated complement activation. In the present study, the relationships between serum anti-PEG IgM concentration, the intensity of complement activation and the hepatic clearance of SL were quantitatively investigated for their role in the ABC phenomenon. Interestingly, with increasing serum anti-PEG IgM concentrations, the intensity of complement activation increased linearly, while the intensity of the hepatic clearance of SL was increased and then saturated. In addition, only 15-17% of anti-PEG IgM in blood circulation induced by SL at different doses was associated with a second dose SL. The present results indicate that it is the hepatic uptake of SL that is the limiting step in the ABC phenomenon, rather than the association of anti-PEG IgM to the SL and a subsequent complement activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.