Poor neuromuscular control has been proposed as a risk factor for non-contact injuries, thus this study aimed to explore the effects of soccer-specific fatigue on leg muscle activation, reactive strength, leg stiffness, and functional hamstring/quadriceps ratio (H/Q ) in elite male youth soccer players. Outcome measures were determined in 18 youth players (age 14.4 ± 0.5 years; stature 169.4 ± 9.9 cm; mass 59.3 ± 8.9 kg; maturity offset 0.86 ± 0.88 years) pre and post simulated soccer match play (SAFT ). There was no fatigue-related change in the H/Q ; however, reactive strength and leg stiffness were both compromised (P < 0.001) after soccer-specific fatigue. Muscle activation was also locally compromised (P < 0.001) in the medial hamstring and quadriceps but not in the lateral muscles. Where statistically significant changes were observed, the effect sizes ranged from small to large (0.33-0.97). Compromised stiffness when fatigue is present suggests an increased yielding action, greater ground contact times, greater center of mass displacement, and less efficient movement when the limb comes into contact with the ground. This combined with a reduction in medial quadriceps muscle activation may reflect poor kinetic chain control at the hip and an increase in knee injury risk.
The aim of this study was to examine the acute effects of soccer specific fatigue on muscular and neuromuscular function in male youth soccer players. Elite soccer players (n = 20; age 15.7 ± 0.5 y; body height 177.75 ± 6.61 cm; body mass 67.28 ± 8.29 kg) were measured before and after soccer specific exercise (SAFT90). The reactive strength index (RSI) was determined by a drop jump test, leg stiffness (LS) by a 20 sub-maximal two-legged hopping test, and a functional hamstring to quadriceps strength ratio from isokinetic concentric and eccentric strength of the dominant and non-dominant leg (measured at angular velocities of 1.05 rad · s−1 and 3.14 rad · s−1). Metabolic response to the SAFT90 was determined by blood lactate and perceived exertion was assessed by the Borg scale. After simulated match play, a significant decrease in absolute LS (t = 4.411; p < 0.001; ω2 = 0.48) and relative LS (t = 4.326; p < 0.001; ω2 = 0.49) was observed and the RSI increased significantly (t = 3.806; p = 0.001; ω2 = 0.40). A reduction in LS found after the SAFT90 indicates possible reduction in dynamic knee stabilization. However, if we consider the changes in other observed variables, the present study did not clearly confirm that fatigue induced by a soccer specific protocol increased the risk of ACL and hamstring injury. This may be attributed to the simulated rather than actual match play used in the present study.
Stastny, P, Lehnert, M, Zaatar, AMZ, Svoboda, Z, and Xaverova, Z. Does the dumbbell-carrying position change the muscle activity in split squats and walking lunges? J Strength Cond Res 29(11): 3177–3187, 2015—The forward walking lunge (WL) and split squat (SSq) are similar exercises that have differences in the eccentric phase, and both can be performed in the ipsilateral or contralateral carrying conditions. This study aimed to determine the effects of dumbbell-carrying position on the kinematics and electromyographic (EMG) amplitudes of the gluteus medius (Gmed), vastus medialis (VM), vastus lateralis (VL), and biceps femoris during WLs and SSqs. The resistance-trained (RT) and the non–resistance-trained (NT) groups (both n = 14) performed ipsilateral WLs, contralateral WLs, ipsilateral SSqs, and contralateral SSqs in a randomized order in a simulated training session. The EMG amplitude, expressed as a percentage of the maximal voluntary isometric contraction (%MVIC), and the kinematics, expressed as the range of motion (ROM) of the hip and knee, were measured during 5 repetition maximum for both legs. The repeated measure analyses of variance showed significant differences between the RT and NT groups. The NT group showed a smaller knee flexion ROM (p < 0.001, η2 = 0.36) during both types of WLs, whereas the RT group showed a higher eccentric Gmed amplitude (p < 0.001, η2 = 0.46) during all exercises and a higher eccentric VL amplitude (p < 0.001, η2 = 0.63) during contralateral WLs. Further differences were found between contralateral and ipsilateral WLs in both the RT (p < 0.001, η2 = 0.69) and NT groups (p < 0.001, η2 = 0.80), and contralateral WLs resulted in higher eccentric Gmed amplitudes. Contralateral WLs highly activated the Gmed (90% MVIC); therefore, this exercise can increase the Gmed maximal strength. The ipsilateral loading condition did not increase the Gmed or VM activity in the RT or NT group.
Poor neuromuscular control and fatigue have been proposed as a risk factor for noncontact injuries especially around peak height velocity (PHV). This study explored the effects of competitive soccer match-play on neuromuscular performance and muscle damage in male youth soccer players. Methods: 24 youth players aged 13-16y were split into a PHV group (-0.5 to 0.5y) and post PHV group (1.0-2.5y) based on maturity offset. Leg stiffness, reactive strength index (RSI), muscle activation, creatine kinase (CK), and muscle soreness were determined pre and post a competitive soccer match. Paired t-tests were used to explore differences pre and post competitive match play and independent sample t-tests for between groups differences for all outcome measures. Results: There were no significant fatigue related change in absolute and relative leg stiffness or muscle activation in both groups, except for the gastrocnemius in the post PHV group. RSI, CK and perceived muscle soreness were significantly different after soccer match-play in both groups with small to large effects observed (ES:0.41-2.82). There were no significant differences between the groups pre match-play except for absolute and relative leg stiffness (P < 0.001; ES = 1.16 and 0.63 respectively). No significant differences were observed in the fatigue related responses to competitive match play between groups except for perceived muscle soreness. Conclusions: The influence of competitive match-play on neuromuscular function and muscle damage is similar in male youth around the time of PHV and those post-PHV indicating that other factors must contribute to the heightened injury risk around PHV.
The strength ratio between hamstrings and quadriceps (H/Q) is associated with knee injuries as well as hip abductor muscle (HAB) weakness. Sixteen resistance trained men (age, 32.5 ± 4.2 years) performed 5 s maximal isometric contractions at 75° of knee flexion/extension and 15° of hip abduction on a dynamometer. After this isometric test they performed a Farmer’s walk exercise to find out if the muscle strength ratio predicted the electromyography amplitude expressed as a percentage of maximum voluntary isometric contraction (%MVIC). The carried load represented a moderate intensity of 75% of the exercise six repetitions maximum (6RM). Electromyography data from the vastus medialis (VM), vastus lateralis (VL), biceps femoris (BF) and gluteus medius (Gmed) on each leg were collected during the procedure. The groups selected were participants with H/Q ≥ 0.5, HQ < 0.5, HAB/H ≥ 1, HAB/H < 1, HAB/Q ≥ 0.5 and HAB/Q < 0.5. One way ANOVA showed that Gmed activity was significantly greater in the group with HAB/H < 1 (42 ± 14 %MVIC) as compared to HAB/H ≥ 1 (26 ± 10 %MVIC) and HAB/Q < 0.5 (47 ± 19 %MVIC) compared to HAB/Q ≥ 0.5 (26 ± 12 %MVIC). The individuals with HAB/H < 1 were found to have greater activation of their Gmed during the Farmer’s walk exercise. Individuals with HAB/Q < 0.5 had greater activation of the Gmed. Gmed strength ratios predict the muscle involvement when a moderate amount of the external load is used. The Farmer’s walk is recommended as an exercise which can strengthen the gluteus medius, especially for individuals with a HAB/H ratio < 1 and HAB/Q < 0.5.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.