The voltage profile of different buses and the rotor dynamics of generators are adversely affected by a generator outage. Generator outages can be minimized using a variety of strategies and algorithms. An AI-based knowledge discovery approach has been reported in this article. This article proposes a technique for identifying sensitive loads and the amount of active and reactive power curtailment for rotor speed regulation and voltage management at the terminals. The MATLAB®/Simulink environment verifies and tests the method’s practicality on an IEEE-10-machine-39-bus system. Active power shedding is considered for rotor angle stability, while reactive power is also shedded for maintaining the terminal voltage at the loads. A sequential outage is considered to simulate a scenario where the two generators with the highest active and reactive power are taken out of service. The generator’s rotor speed, terminal voltage, and load are measured with and without load restriction. In all situations, the rotor and center of inertia speed are 1 p.u. The average steady-state load terminal voltage is 0.967 V. The average terminal voltage of all load buses improves from 0.933 to 0.972 and 0.936 to 0.971, case-wise. The reported results confirm and validate the effectiveness and applicability of the proposed technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.