We establish a common coupled fixed point theorem for weakly compatible mappings on modified intuitionistic fuzzy metric spaces. As an application of our result, we study the existence and uniqueness of the solution to a nonlinear Fredholm integral equation. We also give an example to demonstrate our result.
We introduce the concept of (EA) property and occasional w-compatibility for hybrid pair F : X × X → 2X and f : X → X. We also introduce common (EA) property for two hybrid pairs F, G : X → 2X and f, g : X → X. We establish some common coupled fixed point theorems for two hybrid pairs of mappings under φ-ψ contraction on noncomplete metric spaces. An example is also given to validate our results. We improve, extend and generalize several known results. The results of this paper generalize the common fixed point theorems for hybrid pairs of mappings and essentially contain fixed point theorems for hybrid pair of mappings.
Abstract. We establish a common fixed point theorem for mappings under φ-contractive conditions on intuitionistic fuzzy metric spaces. As an application of our result we study the existence and uniqueness of the solution to a nonlinear Fredholm integral equation. We also give an example to validate our result.
Abstract. In this paper, we introduce the concept of w−compatibility and weakly commutativity for hybrid pair of mappings F : X × X × X → 2 X and g : X → X and establish a common tripled fixed point theorem under generalized nonlinear contraction. An example is also given to validate our result. We improve, extend and generalize various known results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.