Data regarding the role of TGF-β for the in vivo function of regulatory CD4+CD25+ T cells (Treg) are controversial. A transgenic mouse model with impaired TGF-β signaling specifically in T cells was used to assess the role of endogenous TGF-β for the in vivo function of CD4+CD25+ Treg in a murine model of colitis induced by dextran sulfate. Transfer of wild-type, but not transgenic CD4+CD25+ Treg was found to suppress colitis in wild-type mice. In addition, by transferring CFSE-labeled CD4+CD25+ Treg we could demonstrate that endogenous TGF-β promotes the expansion of CD4+CD25+ Treg in vivo. Transgenic mice themselves developed reduced numbers of peripheral CD4+CD25+ Treg and were more susceptible to the induction of colitis, which could be prevented by the transfer of wild-type Treg. These data indicate that TGF-β signaling in CD4+CD25+ Treg is required for their in vivo expansion and suppressive capacity.
Polyphosphates are linear polymers and ubiquitous metabolites. Bacterial polyphosphates are long chains of hundreds of phosphate units. Here, we report that mouse survival of peritoneal Escherichia coli sepsis is compromised by long-chain polyphosphates, and improves with bacterial polyphosphatekinase deficiency or neutralization using recombinant exopolyphosphatase. Polyphosphate activities are chain-length dependent, impair pathogen clearance, antagonize phagocyte recruitment, diminish phagocytosis and decrease production of iNOS and cytokines. Macrophages bind and internalize polyphosphates, in which their effects are independent of P2Y1 and RAGE receptors. The M1 polarization driven by E. coli derived LPS is misdirected by polyphosphates in favor of an M2 resembling phenotype. Long-chain polyphosphates modulate the expression of more than 1800 LPS/TLR4-regulated genes in macrophages. This interference includes suppression of hundreds of type I interferonregulated genes due to lower interferon production and responsiveness, blunted STAT1 phosphorylation and reduced MHCII expression. In conclusion, prokaryotic polyphosphates disturb multiple macrophage functions for evading host immunity.
Interleukin (IL)-4 and IL-13 are key factors in the pathogenesis of bronchopulmonary mycosis induced in mice by infection with Cryptococcus neoformans. Both cytokines use the IL-4 receptor alpha-chain (IL-4Ralpha). In this study, we investigated the role played by IL-4Ralpha expression in susceptibility to pulmonary C. neoformans infection. IL-4Ralpha(-/-) mice were extremely resistant. To characterize the effect of IL-4Ralpha expression level on disease outcome, we generated IL-4Ralpha(+/-) first-generation (F1) mice. IL-4Ralpha(+/-) mice showed intermediate levels of IL-4Ralpha expression, in contrast to higher levels in wild-type mice and no expression in IL-4Ralpha(-/-) mice, indicating biallelic expression of the gene for IL-4Ralpha (Il4ra). Concomitant with intermediate IL-4Ralpha expression, F1 mice showed intermediate susceptibility associated with altered Th2/Th17 cytokine production, decreased immunoglobulin E levels, and reduced allergic inflammation. This indicates a gene-dosage effect of IL-4Ralpha expression on susceptibility to bronchopulmonary mycosis. These data provide the basis for novel therapies antagonizing IL-4Ralpha in Th2-related pulmonary infection and possibly also in asthma.
Chronic, nonhealing wounds represent a major clinical challenge to practically all disciplines in modern medicine including dermatology, oncology, surgery, and hematology. In skin wounds, granulocyte-macrophage colony stimulating factor (GM-CSF) is secreted by keratinocytes shortly after injury and mediates epidermal cell proliferation in an autocrine manner. Many other cells involved in wound healing including macrophages, lymphocytes, fibroblasts, endothelial cells, and dendritic cells synthesize GM-CSF and/or are targets of this cytokine. Therefore, GM-CSF is a pleiotropic cytokine evoking complex processes during wound repair. Despite this complexity and the scarcity of mechanistic understanding GM-CSF has been employed in trials of clinical treatment of skin wounds with some success. In this study, we evaluated a transgenic mouse model in order to analyze the effects of an excess of keratinocyte-derived GM-CSF on excisional wound healing in the skin. Transgenic mice constitutively overexpressing GM-CSF in the basal layer of the epidermis displayed accelerated reepithelialization of full-thickness skin wounds. In the early stages of wound repair, transgenic mice exhibited significantly higher numbers of proliferating keratinocytes at the wound edges and increased formation of granulation tissue with enhanced neovascularization. As a potential mechanism of these beneficial changes, we identified the differential temporal regulation of cytokines such as transforming growth factor-beta, a known angiogenetic factor, interferon-gamma, a proinflammatory cytokine, and interleukin 6, an essential factor for reepithelialization, in transgenic mice versus controls. We propose that the beneficial effects observed in GM-CSF transgenics are due not only to direct GM-CSF action but in addition to indirect processes via the induction of secondary cytokines.
A genetic basis of hepatocellular carcinoma (HCC) has been well-established and major signaling pathways, such as p53, Wnt-signaling, transforming growth factor-b (TGF-b) and Ras pathways, have been identified to be essential to HCC development. Lately, the family of platelet-derived growth factors (PDGFs) has shifted to the center of interest. We have reported on spontaneously developing liver fibrosis in PDGF-B transgenic mice. Since HCC rarely occurs in healthy liver, but dramatically increases at the cirrhosis stage of which liver fibrosis is a preliminary stage, we investigated liver cancer development in chemically induced liver carcinogenesis in these mice. HCC induction was performed by treatment of the mice with diethylnitrosamine and phenobarbital. At an age of 6 months, the tumor development of these animals was analyzed. Not only the development of dysplastic lesions in PDGF-B transgenic mice was significantly increased but also their malignant transformation to HCC. Furthermore, we were able to establish a key role of PDGF-B signaling at diverse stages of liver cancer development. Here, we show that development of liver fibrosis is likely through upregulation of TGF-b receptors by PDGF-B. Additionally, overexpression of PDGF-B also leads to an increased expression of b-catenin as well as vascular endothelial growth factor and platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31), all factors with established roles in carcinogenesis. We were able to extend the understanding of key genetic regulators in HCC development by PDGF-B and decode essential downstream signals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.