In pursuit of research to create a synthetic tissue scaffold by a micropunching process, material properties of polycaprolactone (PCL) in liquid nitrogen were determined experimentally and used for finite element modeling of cryogenic micropunching process. Specimens were prepared using injection molding and tested under compression to determine the stress–strain relationship of PCL below its glass transition temperature. Cryogenic conditions were maintained by keeping the PCL specimens submerged in liquid nitrogen throughout the loading cycle. Specimens of two different aspect ratios were used for testing. Yield strength, strength coefficient, and strain hardening exponent were determined for different specimen aspect ratios and extrapolated for the case with zero diameter to length ratio. Material properties were also determined at room temperature and compared against results available in the literature. Results demonstrate that PCL behaves in a brittle manner at cryogenic temperatures with more than ten times increase in Young's modulus from its value at room temperature. The results were used to predict punching forces for the design of microscale hole punching dies and for validation of a microscale hole punching model that was created with a commercially available finite element software package, deform 3D. The three parameters, yield strength, strength coefficient, and strain hardening exponent, used in Ludwik's equation to model flow stress of PCL in deform 3D were determined to be 94.8 MPa, 210 MPa, and 0.54, respectively. The predicted peak punching force from finite element simulations matched with experimentally determined punching force results.
Thermal necrosis of bone occurs at sustained temperatures above approximately 47°C. During joint replacement surgery, resection of bone by sawing can heat the bone above this necrotic threshold, thereby inducing cellular damage and negatively affecting surgical outcomes. The aim of this research was to investigate the effect of saw blade speed and applied thrust force on the heating of bone. A sagittal sawing fixture was used to make cuts in cortical bovine bone, while thermocouples were used to characterize the temperature profile from the cut surface. A full factorial Design of Experiments was performed to determine the relative effects of blade speed and applied thrust force on temperature. When comparing the effect of speed to force in the regression analysis, the effect of force on temperature (p < 0.001) was 2.5 times more significant than speed (p = 0.005). The interaction of speed and force was not statistically significant (p > 0.05). The results of this research can be used in the development of training simulators, where virtual surgeries with haptic feedback can be accompanied by the related temperatures in proximity to the cut. From a clinical perspective, the results indicate that aggressive cutting at higher blade speed and greater thrust force results in lower temperatures in the surrounding bone.
The number of total knee arthroplasty revision surgeries is increasing each year, driven by the wide availability and general acceptance of the procedure accompanied by an aging population of implants. Metal implants are often secured to the tibial plateau by a mantle of poly(methyl methacrylate) bone cement. During revision surgery, a power oscillating saw is used to remove bone cement while preparing the boney bed. Presently, there are no published studies on the mechanics of bone cement removal by a sawing process. The aim of this research was to quantify the effect of blade speed and applied thrust force on the volumetric cutting rate of bone cement. A custom reciprocating saw with variable stroke length was used to conduct a three-factor design of experiments. Two levels, without center-points, were sufficient to model the effect of stroke length (6.75, 10.13 mm), thrust force (11, 19 N), and reciprocating speed in strokes per minute (6000, 8000 SPM) on cutting rate. The results indicate that each of the three parameters had a significant impact on cutting rate (p < 0.001), with a linear relationship between both force and cutting rate (r = 0.98) and blade speed and cutting rate (r = 0.98). For the parameters considered, increasing the reciprocating speed had the most significant effect on cutting rate. For example, while holding force and stroke length constant (11 N, 10.13 mm), an increase in speed from 6000 to 8000 SPM nearly doubled the cutting rate of bone cement. A cutting rate model was developed by regression analysis of the experimental data and validated through additional experiments. The model has applications in haptic feedback for surgical simulators to differentiate between the cutting rates of bone and bone cement during virtual training of resident surgeons.
Portable bandsaws are gaining in popularity for their use on remote jobsites to efficiently cut structural materials such as bar, pipe, and channel. Some of their increased popularity is due to the recent introduction of high watt-hour lithium ion batteries, which has further improved the portability of bandsaws by making them cordless. However, with cordless bandsaws, knowledge of cutting rates becomes more important as battery runtime limits productivity. Unlike industrial cutoff bandsaws that typically have feed rate control, the cutting rate of portable bandsaws is determined by operator applied pressure and gravity. While some research has highlighted the cutting mechanics of bandsaws and related wear processes, there is a lack of progress in the area of predicting cutoff time as a function of sawing parameters, such as applied thrust force, blade speed, workpiece material properties, and geometry of the cross section. Research was conducted to develop and experimentally verify a mechanistic model to predict cutting rates of various cross sectional geometries with a gravity fed portable bandsaw. The analytical model relies upon experimental determination of a cutting constant equation, which was developed for a low carbon steel workpiece cut with an 18 teeth per inch (TPI) blade. The model was employed to predict crosscutting times for steel rounds, squares, and tubes for several conditions of thrust force and blade speed. Model predictions of cutting time were in close agreement with experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.