Sulfide based luminescent materials have attracted a lot of attention for a wide range of photo-and electroluminescence applications. Among the sulfides, ZnS is promising host material for development of phosphors in different visible emission bands. Doping of Ag can affect the electroluminescence of the host material. Incorporation of host ZnS into the polymer matrix is one of the best method to display their special functions, which stabilize the nanoparticles. Here we report a synthesis and electroluminescence of silver doped ZnS/PVK nanocomposites thin films. Reported films were prepared by using chemical route with varying Ag doping and ZnS loading in the composite. Structural and morphological characterization were carried out through XRD and SEM techniques, which confirmed the particles in nanoregime. Though optical absorption spectra and band gap of ZnS semiconductor nanoparticles in ZnS:Ag/PVK matrix were estimated, and using EMA model, particle size was calculated which supports the results of XRD. Electroluminescence of nanocomposite samples was studied and it was found that threshold voltage depends on doping of Ag and also on loading of ZnS. Voltage brightness characteristics support the production of EL by acceleration-collision mechanism.Contents of Paper
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.