BackgroundNeuroinflammation is an important secondary mechanism that is a key mediator of the long-term consequences of neuronal injury that occur in traumatic brain injury (TBI). Microglia are highly plastic cells with dual roles in neuronal injury and recovery. Recent studies suggest that the chemokine fractalkine (CX3CL1, FKN) mediates neural/microglial interactions via its sole receptor CX3CR1. CX3CL1/CX3CR1 signaling modulates microglia activation, and depending upon the type and time of injury, either protects or exacerbates neurological diseases.MethodsIn this study, mice deficient in CX3CR1 were subjected to mild controlled cortical impact injury (CCI), a model of TBI. We evaluated the effects of genetic deletion of CX3CR1 on histopathology, cell death/survival, microglia activation, and cognitive function for 30 days post-injury.ResultsDuring the acute post-injury period (24 h–15 days), motor deficits, cell death, and neuronal cell loss were more profound in injured wild-type than in CX3CR1−/− mice. In contrast, during the chronic period of 30 days post-TBI, injured CX3CR1−/− mice exhibited greater cognitive dysfunction and increased neuronal death than wild-type mice. The protective and deleterious effects of CX3CR1 were associated with changes in microglia phenotypes; during the acute phase CX3CR1−/− mice showed a predominant anti-inflammatory M2 microglial response, with increased expression of Ym1, CD206, and TGFβ. In contrast, increased M1 phenotypic microglia markers, Marco, and CD68 were predominant at 30 days post-TBI.ConclusionCollectively, these novel data demonstrate a time-dependent role for CX3CL1/CX3CR1 signaling after TBI and suggest that the acute and chronic responses to mild TBI are modulated in part by distinct microglia phenotypes.
The factors by which aging predisposes to critical illness are varied, complex, and not well understood. Sepsis is considered a quintessential disease of old age because the incidence and mortality of severe sepsis increases in old and the oldest old individuals. Aging is associated with dramatic changes in sleep quality and quantity and sleep increasingly becomes fragmented with age. In healthy adults, sleep disruption induces inflammation. Multiple aspects of aging and of sleep dysregulation interact via neuroimmune mechanisms. Tumor necrosis factor-α (TNF), a cytokine involved in sleep regulation and neuroimmune processes, exerts some of its effects on the CNS by crossing the blood–brain barrier (BBB). In this study we examined the impact of sepsis, sleep fragmentation, and aging on BBB disruption and TNF transport into brain. We used the cecal ligation and puncture (CLP) model of sepsis in young and aged mice that were either undisturbed or had their sleep disrupted. There was a dichotomous effect of sepsis and sleep disruption with age: sepsis disrupted the BBB and increased TNF transport in young mice but not in aged mice, whereas sleep fragmentation disrupted the BBB and increased TNF transport in aged mice, but not in young mice. Combining sleep fragmentation and CLP did not produce a greater effect on either of these BBB parameters than did either of these manipulations alone. These results suggest that the mechanisms by which sleep fragmentation and sepsis alter BBB functions are fundamentally different from one another and that a major change in the organism’s responses to those insults occurs with aging.
Background Sleep disruption is a frequent occurrence in modern society. Whereas many studies have focused on the consequences of total sleep deprivation, few have investigated the condition of sleep disruption. New Method We disrupted sleep of mice during the light period for 9 consecutive days using an intermittently-rotating disc. Results Electroencephalogram (EEG) data demonstrated that non-rapid eye movement (NREM) sleep was severely fragmented and REM sleep was essentially abolished during the 12 h light period. During the dark period, when sleep was not disrupted, neither NREM sleep nor REM sleep times differed from control values. Analysis of the EEG revealed a trend for increased power in the peak frequency of the NREM EEG spectra during the dark period. The fragmentation protocol was not overly stressful as body weights and water consumption remained unchanged, and plasma corticosterone did not differ between mice subjected to 3 or 9 days of sleep disruption and home cage controls. However, mice subjected to 9 days of sleep disruption by this method responded to lipopolysaccharide with an exacerbated febrile response. Comparison with existing methods Existing methods to disrupt sleep of laboratory rodents often subject the animal to excessive locomotion, vibration, or sudden movements. This method does not suffer from any of these confounds. Conclusions This study demonstrates that prolonged sleep disruption of mice exacerbates febrile responses to lipopolysaccharide. This device provides a method to determine mechanisms by which chronic insufficient sleep contributes to the etiology of many pathologies, particularly those with an inflammatory component.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.