β-lactam antibiotics target DD-transpeptidases, enzymes that perform the last step of bacterial cell-wall synthesis. To block the antimicrobial activity of these antibiotics, bacteria have evolved lactamases that render them inert. Among these, TEM-1, a class A lactamase, has been extensively studied. In 2004, Horn et al. described a novel allosteric TEM-1 inhibitor, FTA, that binds distant from the TEM-1 orthosteric (penicillin-binding) pocket. TEM-1 has subsequently become a model for the study of allostery. In the present work, we perform molecular dynamics simulations of FTA-bound and FTA-absent TEM-1, totaling $3 μS, that provide new insight into TEM-1 inhibition. In one of the simulations, bound FTA assumed a conformation different than that observed crystallographically. We provide evidence that the alternate pose is physiologically plausible and describe how it impacts our understanding of TEM-1 allostery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.