As ecological data and associated analyses become more widely available, synthesizing results for effective communication with stakeholders is essential. In the case of wildlife corridors, managers in human‐dominated landscapes need to identify both the locations of corridors and multiple stakeholders for effective oversight. We synthesized five independent studies of tiger (Panthera tigris) connectivity in central India, a global priority landscape for tiger conservation, to quantify agreement on landscape permeability for tiger movement and potential movement pathways. We used the latter analysis to identify connectivity areas on which studies agreed and stakeholders associated with these areas to determine relevant participants in corridor management. Three or more of the five studies’ resistance layers agreed in 63% of the study area. Areas in which all studies agree on resistance were of primarily low (66%, e.g., forest) and high (24%, e.g., urban) resistance. Agreement was lower in intermediate resistance areas (e.g., agriculture). Despite these differences, the studies largely agreed on areas with high levels of potential movement: >40% of high average (top 20%) current‐flow pixels were also in the top 20% of current‐flow agreement pixels (measured by low variation), indicating consensus connectivity areas (CCAs) as conservation priorities. Roughly 70% of the CCAs fell within village administrative boundaries, and 100% overlapped forest department management boundaries, suggesting that people live and use forests within these priority areas. Over 16% of total CCAs’ area was within 1 km of linear infrastructure (437 road, 170 railway, 179 transmission line, and 339 canal crossings; 105 mines within 1 km of CCAs). In 2019, 78% of forest land diversions for infrastructure and mining in Madhya Pradesh (which comprises most of the study region) took place in districts with CCAs. Acute competition for land in this landscape with globally important wildlife corridors calls for an effective comanagement strategy involving local communities, forest departments, and infrastructure planners.
Biodiversity conservation and human well-being are tightly interlinked. Yet, mismatches in the scale at which these two priority issues are planned and implemented have exacerbated biodiversity loss, erosion of ecosystem services and declining human quality of life. India houses the second largest human population on the planet, while < 5% of the country's land area is effectively protected for conservation. This warrants landscape-level conservation planning through a judicious mix of land-sharing and land-sparing approaches combined with the co-production of ecosystem services. Through a multifaceted assessment, we prioritize spatial extents of land parcels that, in the face of anthropogenic threats, can safeguard conservation landscapes across India's biogeographic zones. We found that only a fraction (~15%) of the priority areas identified here are encompassed under India's extant Protected Area network, and furthermore, that several landscapes of high importance were omitted from all previous global-scale assessments. We then examined the spatial congruence of priority areas with administrative units earmarked for economic development by the Indian government and propose management zoning through state-driven and participatory approaches. Our spatially explicit insights can help meet the twin goals of biodiversity conservation and sustainable development in India and other countries across the Global South.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.