Sleep apnea is a prevalent respiratory disease in which episodic cessation of breathing causes intermittent hypoxia. Patients with sleep apnea and rodents exposed to intermittent hypoxia exhibit hypertension. The carotid body senses changes in blood O2 concentrations and an enhanced carotid body chemosensory reflex contributes to hypertension in sleep apnea patients. Using a rodent model of intermittent hypoxia that simulates blood O2-saturation profiles of patients with sleep apnea, increased generation of reactive oxygen species (ROS) in the carotid body has been shown to enhance the chemosensory reflex and trigger hypertension. Here, we report that ROS inhibited CO generation by heme oxygenase-2 (HO-2), a process that requires Cys265 in the heme regulatory motif of HO-2. CO binds to guanylate cyclase to increase production of cGMP, which stimulates protein kinase G-dependent phosphorylation and inactivation of the H2S-producing enzyme cystathionine-γ-lyase (CSE). We showed that ROS induced by intermittent hypoxia inhibited CO production and increased H2S concentrations, which stimulated carotid body neural activity. Blockade of H2S synthesis by CSE either by pharmacological or genetic approaches inhibited carotid body activation and hypertension induced by intermittent hypoxia. Thus, oxidant-induced inactivation of HO-2 leading to increased CSE-dependent H2S production in the carotid body is a critical trigger of hypertension in rodents exposed to intermittent hypoxia.
Various neurodegenerative diseases and psychiatric disorders are marked by alterations in brain cholinergic function and cognitive deficits. Efforts to alleviate such deficits have been limited by a lack of selective M 1 muscarinic agonists. 5-(3-Ethyl-1,2,4-oxadiazol-5-yl)-1,4,5,6-tetrahydropyrimidine hydrochloride (CDD-0102A) is a partial agonist at M 1 muscarinic receptors with limited activity at other muscarinic receptor subtypes. The present studies investigated the effects of CDD-0102A on working memory and strategy shifting in rats. CDD-0102A administered intraperitoneally 30 min before testing at 0.1, 0.3, and 1 mg/kg significantly enhanced delayed spontaneous alternation performance in a four-arm cross maze, suggesting improvement in working memory. In separate experiments, CDD-0102A had potent enhancing effects on learning and switching between a place and visual cue discrimination.Treatment with CDD-0102A did not affect acquisition of either a place or visual cue discrimination. In contrast, CDD-0102A at 0.03 and 0.1 mg/kg significantly enhanced a shift between a place and visual cue discrimination. Analysis of the errors in the shift to the place or shift to the visual cue strategy revealed that in both cases CDD-0102A significantly increased the ability to initially inhibit a previously relevant strategy and maintain a new, relevant strategy once selected. In anesthetized rats, the minimum dose required to induce salivation was approximately 0.3 mg/kg i.p. Salivation increased with dose, and the estimated ED 50 was 2.0 mg/kg. The data suggest that CDD-0102A has unique memory and cognitive enhancing properties that might be useful in the treatment of neurological disorders at doses that do not produce adverse effects such as salivation.
In this small cohort, a reciprocal relationship between direct STA bypass flow and indirect EDAS collaterals frequently occurred. This substantiates the notion that combined direct/indirect bypass can provide temporally complementary revascularization.
Background: Reverse cholesterol transport, the process by which cholesterol is effluxed from cells to high-density lipoproteins (HDL) and is delivered to the liver for clearance, is a promising pathway to augment for treatment of atherosclerosis. Though structure-function relationships for nascent, discoidal HDL and cholesterol efflux have been well studied, how the lipid composition of spherical HDL species - which varies in pathophysiological conditions - impacts their ability to mediate cholesterol efflux has not been investigated. Methods and Results: Spherical gold nanoparticles (5 nm) were used to synthesize spherical HDL analogs (HDL-NP) by adding ApoAI protein, and various lipids. With this strategy a panel of HDL-NP varying in lipid content was generated. HDL-NP designs tested include: dipalmitylphosphatidylcholine (DPPC, saturated fatty acid), dioleoylphosphatidylcholine (DOPC, unsaturated fatty acid), sphingomyelin, lysophosphatidylcholine (LPC), and mixtures thereof. All of these species are found in natural HDL. After characterizing protein and lipid stoichiometry of the purified HDL-NP, these HDL-NP designs were tested in the cellular reverse cholesterol transport assay using J774 mouse macrophages. These studies demonstrate that all HDL-NP designs mediate more efflux than equimolar amounts of ApoAI protein control, and further demonstrate that HDL-NP designs incorporating unsaturated phospholipid (DOPC), sphingomyelin, and LPC - each of which can increase disorder in the lipid membrane and thus give rise to opportunity for cholesterol to intercalate and bind - enhance cholesterol efflux compared to saturated phospholipid (DPPC) design. Conclusion: In summary, these results demonstrate that lipid content of HDL-NP - analogs of spherical HDL - dictates cholesterol efflux function, a finding which sheds light on the functional importance of lipid content variation seen in mature, spherical HDL species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.