In this article, a functionally graded simply supported Euler–Bernoulli beam subjected to moving mass is considered in which the beam-damping is described using fractional Kelvin–Voigt model. A comparison between Caputo and Caputo–Fabrizio fractional derivatives for obtaining the analytical dynamic response of the beam is carried out. The equation of motion is solved by the decomposition method with the cooperation of the Laplace transform. Two verification studies were performed to check the validity of the solutions. The results show that the grading order, the velocity of the moving mass and the fractional derivative order have significant effects on the beam deflection, whereas the difference between the results of the two fractional derivative models is expressed by the determination of the correlation coefficient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.