ABSTRACT:In the recent decade, biosynthesis of the degradable biopolymers polyhydroxyalkanotes in transgenic yeasts became an important research task. Most research strategies depend on either metabolic engineering or molecular approaches. In the present work, research compared PHA biosynthesis in two types of yeasts; Saccharomyces cerevisiae and a non-convenient Kloeckera spp. Yeast strains were equipped in their cytoplasm with the phaABC Re operon containing genes phbA, phbB and phbC of the PHA biosynthetic pathway of Ralstonia eutropha, which encode â-ketothiolase, NADPH-linked acetoacetyl-CoA reductase and PHA synthase, respectively. The transgenic strains Saccharomyces cerevisiae and Kloeckera sp. were able to produce PHA. The maximum content of the polymer detected in the recombinant strain INVSc1/PHA1 was 2.68 % and only poly-3-hydroxybutyrate (PHB) accumulated. However, the non-conventional transgenic strain KY1/PHA was able to accumulate as maximum of 7.06 % of the copolymer poly-(3-hydroxybutyrateco-poly-3-hydroxyvalerate) (PHV). Western blot analysis confirmed expression of the phaABC Re operon in the transgenic yeast strains. The nature of the PHA thus produced by all tested strains was analyzed by 1 H and 13 C nuclear magnetic resonance (NMR) spectroscopy.
PHAs are a group of intracellular biodegradable polymer produced by (most) bacteria under unbalanced growth conditions. A series of enzymes are involved in different PHAs synthesis, however PhaC synthases are responsible for the polymerization step. PHAs are accumulated in bacterial cells from soluble to insoluble form as storage materials inside the inclusion bodies during unbalanced nutrition or to save organisms from reduces equivalents. PHAs are converted again to soluble components by another pathways and enzymes for the degradation process. PHAs depolymerases are the responsible enzymes. This review is designed to give the non-specialists a condense background about PHAs especially for researcher and students in medicinal and pharmaceutical filled. ABSTRAK: PHAs (polyhydroxyalkanoate) merupakan sekumpulan polimer terbiodegradasikan intrasel yang dihasilkan oleh (kebanyakan) bakteria di bawah keadaan tumbesaran tak seimbang. Satu rangkaian enzim terlibat dalam sistesis PHAs yang berbeza, namun sintesis PhaC bertanggungjawab dalam peringkat pempolimeran. PHAs dikumpulkan dalam sel bakteria dari bentuk larut dan tak larut sebagai bahan simpan di dalam jasad terangkum semasa nutrisi tak seimbang atau untuk menyelamatkan organisma daripada pengurangan tak keseimbangan. PHAs ditukarkan sekali lagi kepada komponen larut dengan cara lain dan enzim lain untuk proses degradasi. PHAs depoly-merases (enzim yang memangkin penguraian makro molekul kepada molekul yang lebih mudah) merupakan enzim yang bertanggunjawab. Kajian semula ini direka untuk memberi mereka yang bukan pakar, satu ringkasan tentang PHAs terutamanya penyelidik dan penuntut dalam bidang peubatan dan farmaseutikal.
Biosynthesis of the biodegradable polymers polyhydroxyalkanotes (PHAs) are studied extensively in wild type and genetically modified prokaryotic cells, however the content and structure of PHA in wild type yeasts are not well documented. The purpose of this study was to screen forty yeast isolates collected from different Egyptian ecosystems for their ability to accumulate PHAs. Identification of the isolates and characterization of PHAs produced by the positive strains in the Nile-red staining assay was envisaged. One positive isolates which was identified using the API 20C yeast identification system as Rhodotorula minuta strain RY4 produced 2% of PHA in biomass, in glucose, oleic acid and tween 60 containing medium, over a growth period of 96 h. The nature of the PHA thus produced was analyzed by infrared spectroscopy and nuclear magnetic resonance (
This review describes the Polyhydroxyalkanoate (PHA), an intracellular biodegradable microbial polymer. PHAs is formed from different types of three hydroxyalkanoic acids monomers, each unit forms an ester bond with the hydroxyl group of the other one and the hydroxyl substituted carbon has R configuration. The C-3 atom in β position is branched with at least one carbon atom in the form of methyl group (C1) to thirteen carbons in the form of tridecyl (C13). This alkyl side chain is not necessarily saturated. PHAs are biosynthesized through regulated pathways by specific enzymes. PHAs are accumulated in bacterial cells from soluble to insoluble form as storage materials inside the inclusion bodies during unbalanced nutrition or to save organisms from reducing equivalents. PHAs are converted again to soluble components by PHAs depolymerases and the degraded materials enter various metabolic pathways. Until now, four classes of enzymes responsible for PHAs polymerization are known. PHAs were well studied regarding their promising applications, physical, chemical and biological properties. PHAs are biodegradable, biocompatible, have good material properties, renewable and can be used in many applications. The most limiting factor in PHAs commercialization is their high cost compared to the petroleum plastics. This review highlights the new knowledge and that established by the pioneers in this field as well as the factors, which affect PHAs commercialization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.