The basic need common to all living beings is water. Less than 1% of the water on earth is fresh water and water use is increasing daily. Agricultural practices alone require huge amounts of water. The drip technique improved the efficiency of water use in irrigation and initiated the introduction and development of fertigation, the integrated distribution of water and fertilizer. The past few decades have seen extensive research being carried out in the area of development and evaluation of different technologies available to estimate/measure soil moisture to aid in various applications and to facilitate the use of drip irrigation for users and farmers. In this technology, plant moisture and temperature are accurately monitored and controlled in real time over roots in the form of droplets, by developing smart monitoring system to save water and avoid water waste using drip irrigation technology. Water is delivered to the roots drop by drop, which saves water as well as prevents plants from being flooded and decaying due to excess water released by irrigation methods such as flood irrigation, border irrigation, furrow irrigation, and control basin irrigation. Drip irrigation with an embedded intelligent monitoring system is one of the most valuable techniques used to save water and farmers’ time and energy. In this paper, we design an embedded monitoring system based in the integrated 65 nm CMOS technology in agricultural practices which would facilitate agriculture and enable farmers to monitor crops. Hence, to demonstrate the feasibility, a prototype was constructed and simulated with modelsim and validated with nclaunch the both tools from Cadence, as well as implementation on the FPGA board, was be performed.
It is well known that Field Programmable Gate Arrays (FPGA) are good platforms for implementing embedded systems because of their configurable nature. However, the temperature of FPGAs is becoming a serious concern. Improvements in manufacturing technology led to increased logic density in integrated circuits as well as higher clock frequencies. As logic density increases, so do power density, which in turn increases the temperature, FPGAs follow the same path. A prediction of the thermal state of the Altera Cyclone V System-on-Chip (SoC) is presented in this work. The prediction study employs a numerical technique called Finite Element Method (FEM), which is a discretization method to approximate the real solution of the Partial Differential Equation (PDE) for heat transfer around the board's critical sources. The DE1 5CSEMA5F31C6N board was simulated using the COMSOL Multiphysics® tool for predicting thermal peaks during 13 hours of normal operation. Using the NISA tool, we obtained very similar results to those previously obtained with a margin of error of 2 %. As a result, a Verilog code implementation that describes the same approach used by the last two simulation tools is uploaded to the FPGA to verify the results of these simulations. This paper provides a more accurate vision of the level of operating stability of our FPGA board, which are currently the most important source for prototyping and designing the world's largest systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.