Image classification has gained lot of attention due to its application in different computer vision tasks such as remote sensing, scene analysis, surveillance, object detection, and image retrieval. The primary goal of image classification is to assign the class labels to images according to the image contents. The applications of image classification and image analysis in remote sensing are important as they are used in various applied domains such as military and civil fields. Earlier approaches for remote sensing images and scene analysis are based on low-level feature representations such as color- and texture-based features. Vector of Locally Aggregated Descriptors (VLAD) and orderless Bag-of-Features (BoF) representations are the examples of mid-level approaches for remote sensing image classification. Recent trends for remote sensing and scene classification are focused on the use of Convolutional Neural Network (CNN). Keeping in view the success of CNN models, in this research, we aim to fine-tune ResNet50 by using network surgery and creation of network head along with the fine-tuning of hyperparameters. The learning of hyperparameters is tuned by using a linear decay learning rate scheduler known as piecewise scheduler. To tune the optimizer hyperparameter, Stochastic Gradient Descent with Momentum (SGDM) is used with the usage of weight learn and bias learn rate factor. Experiments and analysis are conducted on five different datasets, that is, UC Merced Land Use Dataset (UCM), RSSCN (the remote sensing scene classification image dataset), SIRI-WHU, Corel-1K, and Corel-1.5K. The analysis and competitive results exemplify that our proposed image classification-based model can classify the images in a more effective and efficient manner as compared to the state-of-the-art research.
Remote sensing is mainly used to investigate sites of dams, bridges, and pipelines to locate construction materials and provide detailed geographic information. In remote sensing image analysis, the images captured through satellite and drones are used to observe surface of the Earth. The main aim of any image classification-based system is to assign semantic labels to captured images, and consequently, using these labels, images can be arranged in a semantic order. The semantic arrangement of images is used in various domains of digital image processing and computer vision such as remote sensing, image retrieval, object recognition, image annotation, scene analysis, content-based image analysis, and video analysis. The earlier approaches for remote sensing image analysis are based on low-level and mid-level feature extraction and representation. These techniques have shown good performance by using different feature combinations and machine learning approaches. These earlier approaches have used small-scale image dataset. The recent trends for remote sensing image analysis are shifted to the use of deep learning model. Various hybrid approaches of deep learning have shown much better results than the use of a single deep learning model. In this review article, a detailed overview of the past trends is presented, based on low-level and mid-level feature representation using traditional machine learning concepts. A summary of publicly available image benchmarks for remote sensing image analysis is also presented. A detailed summary is presented at the end of each section. An overview regarding the current trends of deep learning models is presented along with a detailed comparison of various hybrid approaches based on recent trends. The performance evaluation metrics are also discussed. This review article provides a detailed knowledge related to the existing trends in remote sensing image classification and possible future research directions.
<abstract><p>Content-based image analysis and computer vision techniques are used in various health-care systems to detect the diseases. The abnormalities in a human eye are detected through fundus images captured through a fundus camera. Among eye diseases, glaucoma is considered as the second leading case that can result in neurodegeneration illness. The inappropriate intraocular pressure within the human eye is reported as the main cause of this disease. There are no symptoms of glaucoma at earlier stages and if the disease remains unrectified then it can lead to complete blindness. The early diagnosis of glaucoma can prevent permanent loss of vision. Manual examination of human eye is a possible solution however it is dependant on human efforts. The automatic detection of glaucoma by using a combination of image processing, artificial intelligence and computer vision can help to prevent and detect this disease. In this review article, we aim to present a comprehensive review about the various types of glaucoma, causes of glaucoma, the details about the possible treatment, details about the publicly available image benchmarks, performance metrics, and various approaches based on digital image processing, computer vision, and deep learning. The review article presents a detailed study of various published research models that aim to detect glaucoma from low-level feature extraction to recent trends based on deep learning. The pros and cons of each approach are discussed in detail and tabular representations are used to summarize the results of each category. We report our findings and provide possible future research directions to detect glaucoma in conclusion.</p></abstract>
Automated recognition of handwritten characters and digits is a challenging task. Although a significant amount of literature exists for automatic recognition of handwritten characters of English and other major languages in the world, there exists a wide research gap due to lack of research for recognition of Urdu language. The variations in writing style, shape and size of individual characters and similarities with other characters add to the complexity for accurate classification of handwritten characters. Deep neural networks have emerged as a powerful technology for automated classification of character patters and object images. Although deep networks are known to provide remarkable results on large-scale datasets with millions of images, however the use of deep networks for small image datasets is still challenging. The purpose of this research is to present a classification framework for automatic recognition of handwritten Urdu character and digits with higher recognition accuracy by utilizing theory of transfer learning and pretrained Convolution Neural Networks (CNN). The performance of transfer learning is evaluated in different ways: by using pre-trained AlexNet CNN model with Support Vector Machine (SVM) classifier, and finetuned AlexNet for extracting features and classification. We have fine-tuned AlexNet hyper-parameters to achieve higher accuracy and data augmentation is performed to avoid over-fitting. Experimental results and the quantitative comparisons demonstrate the effectiveness of the proposed research for recognition of handwritten characters and digits using fine-tuned AlexNet. The proposed research based on fine-tuned AlexNet outperforms the related state-of-the-art research thereby achieving a classification accuracy of 97.08%, 98.21%, 94.92% for urdu characters, digits and hybrid datasets respectively. The presented methods can be applied for research on Urdu characters and in diverse domains such as handwritten text image retrieval, reading postal addresses, bank's cheque processing, preserving and digitization of manuscripts from old ages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.