Single, severe traumatic brain injury (TBI) which elevates CNS amyloid, increases the risk of Alzheimer's disease (AD); while repetitive concussive and subconcussive events as observed in athletes and military personnel, may increase the risk of chronic traumatic encephalopathy (CTE). We describe two clinical cases, one with a history of multiple concussions during a career in the National Football League (NFL) and the second with frontotemporal dementia and a single, severe TBI. Both patients presented with cognitive decline and underwent [18F]-Florbetapir positron emission tomography (PET) imaging for amyloid plaques; the retired NFL player also underwent [18F]-T807 PET imaging, a new ligand binding to tau, the main constituent of neurofibrillary tangles (NFT). Case 1, the former NFL player, was 71 years old when he presented with memory impairment and a clinical profile highly similar to AD. [18F]-Florbetapir PET imaging was negative, essentially excluding AD as a diagnosis. CTE was suspected clinically, and [18F]-T807 PET imaging revealed striatal and nigral [18F]-T807 retention consistent with the presence of tauopathy. Case 2 was a 56-year-old man with personality changes and cognitive decline who had sustained a fall complicated by a subdural hematoma. At 1 year post injury, [18F]-Florbetapir PET imaging was negative for an AD pattern of amyloid accumulation in this subject. Focal [18F]-Florbetapir retention was noted at the site of impact. In case 1, amyloid imaging provided improved diagnostic accuracy where standard clinical and laboratory criteria were inadequate. In that same case, tau imaging with [18F]-T807 revealed a subcortical tauopathy that we interpret as a novel form of CTE with a distribution of tauopathy that mimics, to some extent, that of progressive supranuclear palsy (PSP), despite a clinical presentation of amnesia without any movement disorder complaints or signs. A key distinguishing feature is that our patient presented with hippocampal involvement, which is more frequently seen in CTE than in PSP. In case 2, focal [18F]-Florbetapir retention at the site of injury in an otherwise negative scan suggests focal amyloid aggregation. In each of these complex cases, a combination of [18F]-fluorodeoxyglucose, [18F]-Florbetapir and/or [18F]-T807 PET molecular imaging improved the accuracy of diagnosis and prevented inappropriate interventions.
Mobile technologies are becoming ubiquitous in the world, changing the way we communicate and provide patient care and services. Some of the most compelling benefits of mobile technologies are in the areas of disease prevention, health management, and care delivery. For all the advances that are occurring in mobile health, its full potential for older adults is only starting to emerge. Yet, existing mobile health applications have design flaws that may limit usability by older adults. The aim of this paper is to review barriers and identify knowledge gaps where more research is needed to improve the accessibility of mobile health use in aging populations. The same observations might apply to those who are not elderly, including individuals suffering from severe mental or medical illnesses.
BackgroundIdentification and quantification of fibrillar amyloid in brain using positron emission tomography (PET) imaging and Amyvid™ ([18 F] Amyvid, [18 F] florbetapir, 18 F-AV-45) was recently approved by the US Food and Drug Administration as a clinical tool to estimate brain amyloid burden in patients being evaluated for cognitive impairment or dementia. Imaging with [18 F] florbetapir offers in vivo confirmation of the presence of cerebral amyloidosis and may increase the accuracy of the diagnosis and likely cause of cognitive impairment (CI) or dementia. Most importantly, amyloid imaging may improve certainty of etiology in situations where the differential diagnosis cannot be resolved on the basis of standard clinical and laboratory criteria.ResultsA consecutive case series of 30 patients (age 50-89; 16 M/14 F) were clinically evaluated at a cognitive evaluation center of urban dementia center and referred for [18 F] florbetapir PET imaging as part of a comprehensive dementia workup. Evaluation included neurological examination and neuropsychological assessment by dementia experts. [18 F] florbetapir PET scans were read by trained nuclear medicine physicians using the qualitative binary approach. Scans were rated as either positive or negative for the presence of cerebral amyloidosis. In addition to a comprehensive dementia evaluation, post [18 F] florbetapir PET imaging results caused diagnoses to be changed in 10 patients and clarified in 9 patients. Four patients presenting with SCI were negative for amyloidosis. These results show that [18 F] florbetapir PET imaging added diagnostic clarification and discrimination in over half of the patients evaluated.ConclusionsAmyloid imaging provided novel and essential data that: (1) caused diagnosis to be revised; and/or (2) prevented the initiation of incorrect or suboptimal treatment; and/or (3) avoided inappropriate referral to an anti-amyloid clinical trial.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.