The concept of Internet of Things (IoT) is rapidly moving from a vision to being pervasive in our everyday lives. This can be observed in the integration of connected sensors from a multitude of devices such as mobile phones, healthcare equipment, and vehicles. There is a need for the development of infrastructure support and analytical tools to handle IoT data, which are naturally big and complex. But, research on IoT data can be constrained by concerns about the release of privately owned data. In this paper, we present the design and implementation results of a synthetic IoT data generation framework. The framework enables research on synthetic data that exhibit the complex characteristics of original data without compromising proprietary information and personal privacy.
SIFT is a widely-used algorithm that extracts features from images; using it to extract information from hundreds of terabytes of aerial and satellite photographs requires parallelization in order to be feasible. We explore accelerating an existing serial SIFT implementation with OpenMP parallelization and GPU execution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.