In vivo microscopic observations of pulmonary capillaries are limited to subpleural networks that are less dense than interior networks. In addition to the density difference, subpleural and interior capillary diameters may differ, although there are conflicting data on this point. We measured the diameters of subpleural and interior capillaries in rats and dogs. Subpleural diameters were 30% larger in rats and 20% larger in dogs. Because diameter and density differences might cause differences in recruitment between subpleural and interior networks, we measured subpleural and interior recruitment by counting the number of red blood cells per 10 microns of alveolar wall in histological cross sections of rapidly frozen rat lungs. Lung inflation pressures of 4, 12, and 25 cmH2O created a wide range of capillary recruitment in different groups of animals. Red blood cell counts for interior and subpleural capillaries moved in parallel and progressively increased as inflation pressures were reduced. These data demonstrate that recruitment in subpleural capillaries accurately reflect recruitment in interior capillaries and validate the use of in vivo microscopic observations of subpleural capillaries to investigate pulmonary capillary recruitment in general.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.