The insulin-like growth factor I receptor (IGF-IR) is a transmembrane tyrosine kinase that is essential to growth and development and also thought to provide a survival signal for the maintenance of the transformed phenotype. There has been increasing interest in further understanding the role of IGF-I signaling in cancer and in developing receptor antagonists for therapeutic application. We describe herein a novel animal model that involves transgenic expression of a fusion receptor that is constitutively activated by homodimerization. Transgenic mice that expressed the activated receptor showed aberrant development of the mammary glands and developed salivary and mammary adenocarcinomas as early as 8 weeks of age. Xenograft tumors and a cell line were derived from the
Purpose: Chronic myeloid leukemia (CML) is caused by reciprocal translocation between chromosomes 9 and 22, forming BCR-ABL, a constitutively activated tyrosine kinase. Imatinib mesylate, a selective inhibitor of BCR-ABL, represents current frontline therapy for CML; however, emerging evidence suggests that drug resistance to imatinib may limit its long-term success. To improve treatment options, dasatinib (BMS-354825) was developed as a novel, oral, multitargeted kinase inhibitor of BCR-ABL and SRC family kinases. To date, dasatinib has shown promising anti-leukemic activity in preclinical models of CML and in phase I/II clinical studies in patients with imatinib-resistant or imatinib-intolerant disease. Experimental Design: The pharmacokinetic and pharmacodynamic biomarkers of dasatinib were investigated in K562 human CML xenografts grown s.c. in severe combined immunodeficient mice. Tumoral levels of phospho-BCR-ABL/phospho-CrkL were determined by Western blot. Results: Following a single oral administration of dasatinib at a preclinical efficacious dose of 1.25 or 2.5 mg/kg, tumoral phospho-BCR-ABL/phospho-CrkL were maximally inhibited at f3 hours and recovered to basal levels by 24 hours. The time course and extent of the inhibition correlated with the plasma levels of dasatinib in mice. Pharmacokinetic/biomarker modeling predicted that the plasma concentration of dasatinib required to inhibit 90% of phospho-BCR-ABL in vivo was 10.9 ng/mL in mice and 14.6 ng/mL in humans, which is within the range of concentrations achieved in CML patients who responded to dasatinib treatment in the clinic. Conclusions: Phospho-BCR-ABL/phospho-CrkL are likely to be useful clinical biomarkers for the assessment of BCR-ABL kinase inhibition by dasatinib.
In the present study, we compared the preclinical optimal dose and the corresponding active plasma concentration determined in mice with those being observed in cancer patients, i.e. 65-100 microg/ml. The preclinical optimal dose of 0.25 mg/inj was significantly lower than the current clinical dose. However, the active plasma concentration at 0.25 mg/inj is within the range of the active drug concentrations in cancer patients treated with Cetuximab under the current optimal dosing regimen. It appears that the active plasma drug concentration determined in preclinical model predicts better than the optimal preclinical dose for the clinical development of antibody drugs.
Although Erbitux (cetuximab) has proven therapeutic benefit in the clinical setting, the molecular determinants predicting responsiveness to this agent are still not very well understood. Here, we assessed the relationship between basal total and activated (pY1068) epidermal growth factor receptor (EGFR) levels in a tumor and the responsiveness to cetuximab monotherapy or combination-based treatment using human xenograft models. Cetuximab treatment alone (0.25 -1 mg/mouse/injection, q3d, i.p.) effectively delayed the growth of GEO and L2987 tumors by a minimum of 10 days corresponding to log cell kill values of z1.0. Borderline activity was seen in the A549 and WiDr xenografts. However, cetuximab failed to show any significant antitumor activity in the HT29, HCT116, LOVO, Colo205, LX-1, HCC70, and N87 models. All of the studied tumors had detectable yet variable levels of EGFR. For combination regimens, cetuximab (1 mg/mouse/injection, q3dx5, i.p.) and cisplatin (4.5 mg/kg/injection, q3dx5, i.v.) proved to be significantly more efficacious than individual monotherapies in the cisplatin-refractory yet cetuximab-responsive GEO tumor model (P < 0.001). However, no therapeutic enhancement was observed in the cisplatin and cetuximab weakly responsive A549 xenograft. Similarly, combinations of CPT-11 (48 mg/kg/injection, q3dx5, i.v.) with cetuximab (1 mg/mouse/injection, q3dx5, i.p.) failed to show any improvements over individual monotherapies in the cetuximab resistant/weakly responsive HT29, A549, and WiDr models. We conclude that preclinical activity associated with cetuximab monotherapy does not correlate directly with relative basal levels of total or activated (pY1068) EGFR in a tumor. Moreover, robust single-agent activity by cetuximab may be the best predictor for this agent to potentiate chemotherapy-mediated antitumor activities. [Mol Cancer Ther 2006;5(1):104 -13]
Purpose Dasatinib (BMS-354825) is a potent, oral multitargeted kinase inhibitor. It is an effective therapy for patients with imatinib-resistant or -intolerant Ph+ leukemias,. It has demonstrated promising preclinical anti-tumor activity, and is under clinical evaluation in solid tumors. To support the clinical development of dasatinib, we identified a pharmacodynamic biomarker to assess in vivo SRC kinase inhibition, with subsequent evaluation in cancer patients. Methods The biomarker, phosphorylated SRC (phospho-SRC), was first identified in human prostate PC-3 tumor cells and peripheral blood mononuclear cells (PBMCs) in vitro. It was further assessed in nude mice bearing PC-3 xenografts. Phospho-SRC[pY418] in tumors and PBMC were measured by western blot analysis, and were quantified by ELISA assays. Dasatinib plasma concentrations were determined using LC/MS/MS.Results In PC-3 cells, dasatinib showed dose-dependent anti-proliferative effect, which correlated with the inhibition of phospho-SRC[pY418] and of SRC kinase activity. With a single oral dose of 50 or 15 mg/kg, tumoral phospho-SRC[pY418] was maximally inhibited at 3 h, partially reversed between 7 and 17 h, and completely recovered after 24 h post dose. At 5 mg/kg, tumoral phospho-SRC[pY418] inhibition was less pronounced and recovered more rapidly to baseline level within 24h. Dasatinib (1 mg/ kg) resulted in little inhibition. In PBMCs, a similar time course and extent of phospho-SRC[pY418] inhibition was observed. Inhibition of phospho-SRC[pY418] in vivo appeared to correlate with the preclinical in vivo efficacy and PK profiles of dasatinib in mice. Conclusions Phospho-SRC[pY418] may potentially be used as a biomarker to enable assessment of target inhibition in clinical studies exploring dasatinib antitumor activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.