Background: Renal cell carcinoma (RCC) is the sixth leading cause of cancer death and is responsible for 11,000 deaths per year in the US. Approximately one-third of patients present with disease which is already metastatic and for which there is currently no adequate treatment, and no biofluid screening tests exist for RCC. In this study, we have undertaken a comprehensive proteomic analysis and subsequently a pathway and network approach to identify biological processes involved in clear cell RCC (ccRCC). We have used these data to investigate urinary markers of RCC which could be applied to high-risk patients, or to those being followed for recurrence, for early diagnosis and treatment, thereby substantially reducing mortality of this disease.
Collectively, the data in both humans and murine models of human primary biliary cirrhosis (PBC) suggest that activated T cells, particularly CD8 T cells, play a critical role in biliary cell destruction. Under physiological conditions, T cell activation involves two critical signals that involve the MHC and a set of co-stimulatory molecules which include a receptor on T cells coined cytotoxic T lymphocyte antigen 4 (CTLA-4). Germane to the studies reported herein, signaling via CTLA-4 has the potential to modulate co-stimulation and induce inhibitory signals. In this study we have taken advantage of our well-defined murine model of PBC in which mice are immunized with 2-octynoic acid coupled to BSA, leading to the production of high titer anti-mitochondrial autoantibodies and portal cellular infiltrates. To investigate the potential of CTLA-4 Ig as an immunotherapeutic agent, we treated mice both before and after induction of autoimmune cholangitis. Firstly, we demonstrate that CTLA-4 Ig treatment begun one day before 2-OA-BSA immunization, completely inhibits the manifestations of cholangitis, including AMA production, intra-hepatic T cell infiltrates and bile duct damage. However, and more critically, treatment with CTLA-4 Ig initiated after the development of autoimmune cholangitis in previously immunized mice, also resulted in significant therapeutic benefit, including reduced intra-hepatic T cell infiltrates and biliary cell damage, although AMA levels were not altered. These data suggest that an optimized regimen with CTLA-4 Ig has the potential to serve as an investigative therapeutic tool in patients with PBC.
Primary biliary cirrhosis (PBC) is considered a model autoimmune disease due to the clinical homogeneity of patients and the classic hallmark of antimitochondrial antibodies (AMAs). Indeed, the presence of AMAs represents the most highly directed and specific autoantibody in autoimmune diseases. However, the contribution of B cells to the pathogenesis of PBC is unclear. Therefore, although AMAs appear to interact with the biliary cell apotope and contribute to biliary pathology, there is no correlation of disease severity and titer of AMAs. The recent development of well-characterized monoclonal antibodies specific for the B cell populations, anti-CD20 and anti-CD79, and the development of a welldefined xenobiotic-induced model of autoimmune cholangitis prompted us to use these reagents and the model to address the contribution of B cells in the pathogenesis of murine PBC. Prior to the induction of autoimmune cholangitis, mice were treated with either anti-CD20, anti-CD79, or isotype-matched control monoclonal antibody and followed for B cell development, the appearance of AMAs, liver pathology, and cytokine production. Results of the studies reported herein show that the in vivo depletion of B cells using either anti-CD20 or anti-CD79 led to the development of a more severe form of cholangitis than observed in control mice, which is in contrast with results from several other autoimmune models that have documented an important therapeutic role of B cell-specific depletion. Anti-CD20/CD79-treated mice had increased liver T cell infiltrates and higher levels of proinflammatory cytokines. Conclusion: Our results reflect a novel disease-protective role of B cells in PBC and suggest that B cell depletion therapy in humans with PBC should be approached with caution (HEPATOLOGY 2011;53:527-535)
Rapid and accurate detection of genetic mutations based on nanotechnology would provide substantial advances in detection of polycystic kidney disease (PKD), a disease whose current methods of detection are cumbersome due to the large size and duplication of the mutated gene. In this study, a nanotechnology-based DNA assay was developed for detection of SNPs (single nucleotide polymorphisms) in a feline autosomal dominant PKD (ADPKD) model which can readily be adapted to diagnosis of human ADPKD type 1. Europium and terbium phosphors were doped into gadolinium crystal hosts with a magnetic core, providing stable luminescence and the possibility of magnetic manipulations in a solution-based assay. A hybridization-in-solution DNA assay was optimized for feline PKD gene SNP detection using genomic DNA extracted from feline kidney tissue and blood. This assay showed a substantial differentiation between PKD and control specimens. The nanotechnology-based DNA assay is attractive from the viewpoint of rapid availability, simple methodology, and cost reduction for clinical use to detect mutations involved in human ADPKD and other genetic diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.