Visual perception plays a critical role in navigating space and extracting useful semantic information crucial to survival. To identify distant landmarks, we constantly shift gaze vectors through saccades, while still maintaining the visual perception of stable allocentric space. How can we sustain stable allocentric space so effortlessly? To solve this question, we have developed a new concept of NHT (Neural Holography Tomography). This model states that retinotopy is invisible (not available to consciousness) and must be converted to a time code by traveling alpha brainwaves to perceive objects consciously. According to this framework, if identical alpha phases are continually assigned to a landmark, we perceive its exact and consistent allocentric location.To test this hypothesis, we designed reaction time (RT) experiments to observe evidence of the predicted space-to-time conversion. Various visual stimuli were generated at a wide range of eccentricities either on a large TV (up to 40°) or by LED strips on a hemispherical dome (up to 60°). Participants were instructed to report the observed patterns promptly under either covert (no eye movement) or overt (with eye movement) conditions. As predicted, stimuli presented at the center of fixation always produced the fastest RTs. The additional RT delay was precisely proportional to the eccentricity of the peripheral stimulus presentation. Furthermore, both covert and overt attention protocols created the same RT delays, and trajectories of saccadic eye motions were in parallel to the overt RT vs. eccentricity. These findings strongly support our NHT model, in which the observed RT-eccentricity dependence is indicative of the spatiotemporal conversion required for maintaining a stable allocentric frame of reference. That is, we perceive space by time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.