BackgroundNew marine invasions have been recorded in increasing numbers along the world's coasts due in part to the warming of the oceans and the ability of many invasive marine species to tolerate a broader thermal range than native species. Several marine invertebrate species have invaded the U.S. southern and mid-Atlantic coast from the Caribbean and this poleward range expansion has been termed ‘Caribbean Creep’. While models have predicted the continued decline of global biodiversity over the next 100 years due to global climate change, few studies have examined the episodic impacts of prolonged cold events that could impact species range expansions.Methodology/Principal FindingsA pronounced cold spell occurred in January 2010 in the U.S. southern and mid-Atlantic coast and resulted in the mortality of several terrestrial and marine species. To experimentally test whether cold-water temperatures may have caused the disappearance of one species of the ‘Caribbean Creep’ we exposed the non-native crab Petrolisthes armatus to different thermal treatments that mimicked abnormal and severe winter temperatures. Our findings indicate that Petrolisthes armatus cannot tolerate prolonged and extreme cold temperatures (4–6°C) and suggest that aperiodic cold winters may be a critical ‘reset’ mechanism that will limit the range expansion of other ‘Caribbean Creep’ species.Conclusions/SignificanceWe suggest that temperature ‘aberrations’ such as ‘cold snaps’ are an important and overlooked part of climate change. These climate fluctuations should be accounted for in future studies and models, particularly with reference to introduced subtropical and tropical species and predictions of both rates of invasion and rates of unidirectional geographic expansion.
Florence, was a brilliant Italian zoologist and ethologist, and one of the most well-known and active experts on alien aquatic species. Since her masters degree in Biology (1979) and her PhD in Animal Biology (Ethology) (1987), both obtained at the University of Florence, Francesca studied the behaviour and ecology of aquatic animals. Initially, most of her research concerned social recognition in crustaceans: she was particularly renowned for her studies on hermit crabs and crayfish, her principal model organisms.Then, from the 1990's onwards she worked in the field of invasion biology, her main interest until her death. Francesca devoted herself with enthusiasm and energy, not only to the problem of the invasive red swamp crayfish Procambarus clarkii, by revealing several aspects of its behavioral ecology, and by developing with her collaborators different methods for its control, but she gradually became an international expert on crayfish and more generally on aquatic alien species. In all aspects of her life, she was constantly driven by a continuous curiosity, thirst for knowledge and a will to face challenges; this was expressed by exploring and frequently opening new research fields. And she transmitted her drive and passion to the many students she supervised. One of the last papers with her contribution is published in this issue of Aquatic Invasions by Vera Gonçalves, her Portuguese PhD student working on the interaction between Procambarus clarkii and the zebra mussel Dreissena polymorpha, an issue of recent increasing interest in Francesca's team.
Parasitism can represent a potent agent of selection, and introduced parasites have the potential to substantially alter their new hosts' ecology and evolution. While significant impacts have been reported for parasites that switch to new host species, the effects of macroparasite introduction into naïve populations of host species with which they have evolved remain poorly understood. Here, we investigate how the estuarine white‐fingered mud crab (Rhithropanopeus harrisii) has adapted to parasitism by an introduced rhizocephalan parasite (Loxothylacus panopaei) that castrates its host. While the host crab is native to much of the East and Gulf Coasts of North America, its parasite is native only to the southern end of this range. Fifty years ago, the parasite invaded the mid‐Atlantic, gradually expanding through previously naïve host populations. Thus, different populations of the same host species have experienced different degrees of historical interaction (and thus potential evolutionary response time) with the parasite: long term, short term, and naïve. In nine estuaries across this range, we examined whether and how parasite prevalence and host susceptibility to parasitism differs depending on the length of the host's history with the parasite. In field surveys, we found that the parasite was significantly more prevalent in its introduced range (i.e., short‐term interaction) than in its native range (long‐term interaction), a result that was also supported by a meta‐analysis of prevalence data covering the 50 years since its introduction. In controlled laboratory experiments, host susceptibility to parasitism was significantly higher in naïve hosts than in hosts from the parasite's native range, suggesting that host resistance to parasitism is under selection. These results suggest that differences in host–parasite historical interaction can alter the consequences of parasite introductions in host populations. As anthropogenically driven range shifts continue, disruptions of host–parasite evolutionary relationships may become an increasingly important driver of ecological and evolutionary change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.