ConspectusFluorescence microscopy and detection have become indispensible for understanding organization and dynamics in biological systems. Novel fluorophores with improved brightness, photostability, and biocompatibility continue to fuel further advances but often rely on having minimal background. The visualization of interactions in very high biological background, especially for proteins or bound complexes at very low copy numbers, remains a primary challenge. Instead of focusing on molecular brightness of fluorophores, we have adapted the principles of high-sensitivity absorption spectroscopy to improve the sensitivity and signal discrimination in fluorescence bioimaging.Utilizing very long wavelength transient absorptions of kinetically trapped dark states, we employ molecular modulation schemes that do not simultaneously modulate the background fluorescence. This improves the sensitivity and ease of implementation over high-energy photoswitch-based recovery schemes, as no internal dye reference or nanoparticle-based fluorophores are needed to separate the desired signals from background.In this Account, we describe the selection process for and identification of fluorophores that enable optically modulated fluorescence to decrease obscuring background. Differing from thermally stable photoswitches using higher-energy secondary lasers, coillumination at very low energies depopulates transient dark states, dynamically altering the fluorescence and giving characteristic modulation time scales for each modulatable emitter. This process is termed synchronously amplified fluorescence image recovery (SAFIRe) microscopy. By understanding and optically controlling the dye photophysics, we selectively modulate desired fluorophore signals independent of all autofluorescent background. This shifts the fluorescence of interest to unique detection frequencies with nearly shot-noise-limited detection, as no background signals are collected.Although the fluorescence brightness is improved slightly, SAFIRe yields up to 100-fold improved signal visibility by essentially removing obscuring, unmodulated background (RichardsC. I.RichardsC. I.19284790J. Am. Chem. Soc.20091314619). While SAFIRe exhibits a wide, linear dynamic range, we have demonstrated single-molecule signal recovery buried within 200 nM obscuring dye. In addition to enabling signal recovery through background reduction, each dye exhibits a characteristic modulation frequency indicative of its photophysical dynamics. Thus, these characteristic time scales offer opportunities not only to expand the dimensionality of fluorescence imaging by using dark-state lifetimes but also to distinguish the dynamics of subpopulations on the basis of photophysical versus diffusional time scales, even within modulatable populations. The continued development of modulation for signal recovery and observation of biological dynamics holds great promise for studying a range of transient biological phenomena in natural environments. Through the development of a wide range of fluore...
Blue fluorescent proteins (BFPs) offer visualization of protein location and behavior, but often suffer from high autofluorescent background and poor signal discrimination. Through dual-laser excitation of bright and photoinduced dark states, mutations to the residues surrounding the BFP chromophore enable long-wavelength optical modulation of BFP emission. Such dark state engineering enables violet-excited blue emission to be increased upon lower energy, green co-illumination. Turning this green co-illumination on and off at a specific frequency dynamically modulates collected blue fluorescence without generating additional background. Interpreted as transient photoconversion between neutral cis- and anionic trans- chromophoric forms, mutations tune photoisomerization and ground state tautomerizations to enable long-wavelength depopulation of the millisecond-lived, spectrally shifted dark states. Single mutations to the tyrosine-based blue fluorescent protein T203V/S205V exhibit enhanced modulation depth and varied frequency. Importantly, analogous single point mutations in the non-modulatable BFP, mKalama1, creates a modulatable variant. Building modulatable BFPs offers opportunities for improved BFP signal discrimination vs. background, greatly enhancing their utility.
Fluorescent proteins (FPs) have revolutionized molecular and cellular biology; yet, discrimination over cellular autofluorescence, spectral deconvolution, or detection at low concentrations remain challenging problems in many biological applications. By optically depopulating a photoinduced dark state with orange secondary laser co-excitation, the higher-energy green AcGFP fluorescence is dynamically increased. Modulating this secondary laser then modulates the higher-energy, collected fluorescence; enabling its selective detection by removing heterogeneous background from other FPs. Order-of-magnitude reduction in obscuring fluorophore background emission has been achieved in both fixed and live cells. This longwavelength modulation expands the dimensionality to discriminate FP emitters based on dark state lifetimes and enables signal of interest to be recovered by removing heterogeneous background emitter signals. Thus, AcGFP is not only useful for extracting weak signals from systems plagued by high background, but it is a springboard for further FP optimization and utilization for improving sensitivity and selectivity in biological fluorescence imaging.
Photoswitchable fluorescent proteins (PS-FPs) open grand new opportunities in biological imaging. Through optical manipulation of FP emission, we demonstrate that dual-laser modulated synchronously amplified fluorescence image recovery (DM-SAFIRe) improves signal contrast in high background through unambiguous demodulation and is linear in relative fluorophore abundance at different points in the cell. The unique bright-to-dark state interconversion rates of each PS-FP not only enables discrimination of different, yet spectrally indistinguishable FPs, but also allows signal rejection of diffusing relative to bound forms of the same PS-FP, rsFastLime. Adding to the sensitivity gains realized from rejecting non-modulatable background, the selective signal recovery of immobilized vs. diffusing intracellular rsFastLime suggests that DM-SAFIRe can detect weak protein-protein interactions that are normally obscured by large fractions of unbound fluorescent proteins.
The intracellular, cytosolic, delivery of quantum dots is an important goal for cellular imaging. Recently, a hydrophobic anion, pyrenebutyrate had been proposed to serve as a delivery agent for cationic quantum dots as characterized by confocal microscopy. Using an extracellular quantum dot quencher, QSY-21, as an alternative to confocal microscopy, we demonstrate that quantum dots remain on the cell surface and do not cross the plasma membrane following pyrenebutyrate treatment, a result that is confirmed with transmission electron microscopy. Pyrenebutyrate leads to increased cellular binding of quantum dots rather than intracellular delivery. These results characterize the use of QSY-21 as a quantum dot quencher and highlight the importance of the use of complementary techniques when using confocal microscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.