The 21-nucleotide small temporal RNA (stRNA) let-7 regulates developmental timing in Caenorhabditis elegans and probably in other bilateral animals. We present in vivo and in vitro evidence that in Drosophila melanogaster a developmentally regulated precursor RNA is cleaved by an RNA interference-like mechanism to produce mature let-7 stRNA. Targeted destruction in cultured human cells of the messenger RNA encoding the enzyme Dicer, which acts in the RNA interference pathway, leads to accumulation of the let-7 precursor. Thus, the RNA interference and stRNA pathways intersect. Both pathways require the RNA-processing enzyme Dicer to produce the active small-RNA component that represses gene expression.
Two small RNAs regulate the timing of Caenorhabditis elegans development. Transition from the first to the second larval stage fates requires the 22-nucleotide lin-4 RNA, and transition from late larval to adult cell fates requires the 21-nucleotide let-7 RNA. The lin-4 and let-7 RNA genes are not homologous to each other, but are each complementary to sequences in the 3' untranslated regions of a set of protein-coding target genes that are normally negatively regulated by the RNAs. Here we have detected let-7 RNAs of approximately 21 nucleotides in samples from a wide range of animal species, including vertebrate, ascidian, hemichordate, mollusc, annelid and arthropod, but not in RNAs from several cnidarian and poriferan species, Saccharomyces cerevisiae, Escherichia coli or Arabidopsis. We did not detect lin-4 RNA in these species. We found that let-7 temporal regulation is also conserved: let-7 RNA expression is first detected at late larval stages in C. elegans and Drosophila, at 48 hours after fertilization in zebrafish, and in adult stages of annelids and molluscs. The let-7 regulatory RNA may control late temporal transitions during development across animal phylogeny.
RNAi is a gene-silencing phenomenon triggered by double-stranded (ds) RNA and involves the generation of 21 to 26 nt RNA segments that guide mRNA destruction. In Caenorhabditis elegans, lin-4 and let-7 encode small temporal RNAs (stRNAs) of 22 nt that regulate stage-specific development. Here we show that inactivation of genes related to RNAi pathway genes, a homolog of Drosophila Dicer (dcr-1), and two homologs of rde-1 (alg-1 and alg-2), cause heterochronic phenotypes similar to lin-4 and let-7 mutations. Further we show that dcr-1, alg-1, and alg-2 are necessary for the maturation and activity of the lin-4 and let-7 stRNAs. Our findings suggest that a common processing machinery generates guide RNAs that mediate both RNAi and endogenous gene regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.