Anti–programmed cell death protein 1 (PD-1) therapy provides long-term clinical benefits to patients with advanced melanoma. The composition of the gut microbiota correlates with anti–PD-1 efficacy in preclinical models and cancer patients. To investigate whether resistance to anti–PD-1 can be overcome by changing the gut microbiota, this clinical trial evaluated the safety and efficacy of responder-derived fecal microbiota transplantation (FMT) together with anti–PD-1 in patients with PD-1–refractory melanoma. This combination was well tolerated, provided clinical benefit in 6 of 15 patients, and induced rapid and durable microbiota perturbation. Responders exhibited increased abundance of taxa that were previously shown to be associated with response to anti–PD-1, increased CD8+ T cell activation, and decreased frequency of interleukin-8–expressing myeloid cells. Responders had distinct proteomic and metabolomic signatures, and transkingdom network analyses confirmed that the gut microbiome regulated these changes. Collectively, our findings show that FMT and anti–PD-1 changed the gut microbiome and reprogrammed the tumor microenvironment to overcome resistance to anti–PD-1 in a subset of PD-1 advanced melanoma.
The highly aggressive character of melanoma makes it an excellent model for probing the mechanisms underlying metastasis, which remains one of the most difficult challenges in treating cancer. We find that miR-182, member of a miRNA cluster in a chromosomal locus (7q31-34) frequently amplified in melanoma, is commonly upregulated in human melanoma cell lines and tissue samples; this up-regulation correlates with gene copy number in a subset of melanoma cell lines. Moreover, miR-182 ectopic expression stimulates migration of melanoma cells in vitro and their metastatic potential in vivo, whereas miR-182 down-regulation impedes invasion and triggers apoptosis. We further show that miR-182 over-expression promotes migration and survival by directly repressing microphthalmiaassociated transcription factor-M and FOXO3, whereas enhanced expression of either microphthalmia-associated transcription factor-M or FOXO3 blocks miR-182's proinvasive effects. In human tissues, expression of miR-182 increases with progression from primary to metastatic melanoma and inversely correlates with FOXO3 and microphthalmia-associated transcription factor levels. Our data provide a mechanism for invasion and survival in melanoma that could prove applicable to metastasis of other cancers and suggest that miRNA silencing may be a worthwhile therapeutic strategy.microRNA ͉ cancer ͉ invasion M etastasis is a central problem in cancer, yet the mechanisms underlying a cell's ability to extravasate from the primary tumor, circulate, and invade new tissue remain poorly understood. We reasoned that melanoma, one of the most notoriously invasive neoplasia, would provide an excellent model for investigating the alterations that contribute to metastasis. Melanomas are characterized by certain well-defined genetic alterations (reviewed in ref. 1) as well as frequent chromosomal aberrations associated with tumor progression (2). Recent work has also shown that melanomas display genomic alterations involving numerous microRNA genes (3). MicroRNAs (miRNAs) are endogenous noncoding small RNAs that interfere with the translation of coding messenger RNAs (mRNAs) in a sequence-specific manner (4), often to regulate processes involved in development or tissue homeostasis (5-7). Intriguingly, dysregulation of miRNAs has been found to contribute to neoplasia (8). We decided to investigate the possible contributions of miRNA dysregulation to melanoma extravasation, migration, and invasion.We compared the expression of miRNAs in a large cohort of melanoma cell lines with that of normal melanocytes. We found that miR-182, flanked by the c-MET and BRAF oncogenes in the 7q31-34 region that is frequently amplified in melanoma (9, 10), is highly expressed in metastatic melanoma cell lines and tumors, often in association with increased copy number. Moreover, we demonstrate that antisense-mediated repression of miR-182 inhibited invasion and induced melanoma cell death, whereas ectopic miR-182 up-regulation enhanced the oncogenic activity of melanoma cells in vitro ...
Purpose To identify a melanoma miRNA expression signature that is predictive of outcome and then evaluate its potential to improve risk stratification when added to the standard of care staging criteria. Experimental design Total RNA was extracted from 59 formalin-fixed paraffin embedded (FFPE) melanoma metastases and hybridized to miRNA arrays containing 911 probes. We then correlated miRNA expression with post-recurrence survival and other clinicopathological criteria. Results We identified a signature of 18 miRNAs whose overexpression was significantly correlated with longer survival, defined as more than 18 months post-recurrence survival. Subsequent cross-validation showed that a small subset of these miRNAs can predict post-recurrence survival in metastatic melanoma with an estimated accuracy of 80.2% [95% CI: 79.8%, 80.6%]. In contrast to standard of care staging criteria, this six-miRNA signature significantly stratified stage III patients into “better” and “worse” prognostic categories, and a multivariate Cox regression analysis revealed the signature to be an independent predictor of survival. Furthermore, we demonstrated that most miRNAs from the signature also showed differential expression between patients with “better” and “worse prognosis” in the corresponding paired primary melanoma. Conclusion MiRNA signatures have potential as clinically relevant biomarkers of prognosis in metastatic melanoma. Our data suggest that molecularly-based models of risk assessment can improve the standard staging criteria and support the incorporation of miRNAs into such models.
Intradermal injection of botulinum toxin significantly reduced sebum production in the forehead region, with a high degree of patient satisfaction. Intradermal botulinum toxin may be an effective treatment to reduce sebum production in patients with oily skin. Larger, randomized, blinded, placebo-controlled studies are warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.