The biosynthesis of bacterial cell wall peptidoglycan is a complex process involving many different steps taking place in the cytoplasm (synthesis of the nucleotide precursors) and on the inner and outer sides of the cytoplasmic membrane (assembly and polymerization of the disaccharide-peptide monomer unit, respectively). This review summarizes the current knowledge on the membrane steps leading to the formation of the lipid II intermediate, i.e. the substrate of the polymerization reactions. It makes the point on past and recent data that have significantly contributed to the understanding of the biosynthesis of undecaprenyl phosphate, the carrier lipid required for the anchoring of the peptidoglycan hydrophilic units in the membrane, and to the characterization of the MraY and MurG enzymes which catalyze the successive transfers of the N-acetylmuramoyl-peptide and N-acetylglucosamine moieties onto the carrier lipid, respectively. Enzyme inhibitors and antibacterial compounds interfering with these essential metabolic steps and interesting targets are presented.
Two gem-difluoromethylenated nucleoside moieties of liposidomycins, 3 and 4, were designed and synthesized. Compound 3 was assembled from lactol 5 and gem-difluoromethylenated nucleoside 6. In the synthesis of target molecule 4, the coupling of the trichloroacetimidate derivative of gem-difluoromethylenated furanose 7 with nucleoside 8 in the presence of TMSOTf gave the unexpected compound 16 when CH3CN was used as solvent. This results from acetonitrile acting as a nucleophile and participating in the glycosylation reaction. This unusual process may be correlated with the presence of the electron-withdrawing gem-difluoro substituents at the C-2 position of furanose. Compound 3 demonstrated 29% inhibition of MraY at 11.4 mM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.