The cratonic cores of the continents are remarkably stable and long‐lived features. Their ability to resist destructive tectonic processes is associated with their thick (∼250 km), cold, chemically depleted, buoyant lithospheric keels that isolate the cratons from the convecting mantle. The formation mechanism and tectonic stability of cratonic keels remains under debate. To address this issue, we use P wave and S wave relative arrival‐time tomography to constrain upper mantle structure beneath southeast Canada and the northeast USA, a region spanning three quarters of Earth's geological history. Our models show three distinct, broad zones: Seismic wave speeds increase systematically from the Phanerozoic coastal domains, through the Proterozoic Grenville Province, and to the Archean Superior craton in central Québec. We also recover the NW‐SE trending track of the Great Meteor hot spot that crosscuts the major tectonic domains. The decrease in seismic wave speed from Archean to Proterozoic domains across the Grenville Front is consistent with predictions from models of two‐stage keel formation, supporting the idea that keel growth may not have been restricted to Archean times. However, while crustal structure studies suggest that Archean Superior material underlies Grenvillian age rocks up to ∼300 km SE of the Grenville Front, our tomographic models show a near‐vertical boundary in mantle wave speed directly beneath the Grenville Front. We interpret this as evidence for subduction‐driven metasomatic enrichment of the Laurentian cratonic margin, prior to keel stabilization. Variable chemical depletion levels across Archean‐Proterozoic boundaries worldwide may thus be better explained by metasomatic enrichment than inherently less depleted Proterozoic composition at formation.
We present new, high‐resolution, shear velocity models for the western Himalayas and West Tibet from the joint inversion of P receiver functions recorded using seismic stations from four arrays in this region and fundamental mode Rayleigh wave group velocity maps from 5–70 s covering Central and Southern Asia. The Tibetan Plateau is a key locality in understanding large‐scale continental dynamics. A large number of investigations has examined the structure and processes in eastern Tibet; however, western Tibet remains relatively understudied. Previous studies in this region indicate that the western part of the Tibetan Plateau is not a simple extension of the eastern part. The areas covered by these arrays include the Karakoram and Altan‐Tagh faults, and major terrane boundaries in West Tibet and the Himalayas. The arrays used include broadband data collected by the West Tibet Array, a U.S.‐China deployment on the western side of the Tibetan Plateau between 2007 and 2011. We use the shear wave velocity models to obtain estimates of Moho depth. The Moho is deep (68–84 km) throughout West Tibet. We do not observe significant steps within the Moho beneath West Tibet. A large step in Moho depth is observed at the Altyn‐Tagh fault, where Moho depths are 20–30 km shallower to the north of the fault compared to those to the south. Beneath the Lhasa Terrane and Tethyan Himalayas, we observe a low‐velocity zone in the midcrust. This feature is not interrupted by the Karakoram Fault, suggesting that the Karakoram Fault does not cut through the entire crust.
SUMMARY H–κ stacking is used routinely to infer crustal thickness and bulk-crustal VP/VS ratio from teleseismic receiver functions. The method assumes that the largest amplitude P-to-S conversions beneath the seismograph station are generated at the Moho. This is reasonable where the crust is simple and the Moho marks a relatively abrupt transition from crust to mantle, but not if the crust–mantle transition is gradational and/or complex intracrustal structure exists. We demonstrate via synthetic seismogram analysis that H–κ results can be strongly dependent on the choice of stacking parameters (the relative weights assigned to the Moho P-to-S conversion and its subsequent reverberations, the choice of linear or phase-weighted stacking, input crustal P-wave velocity) and associated data parameters (receiver function frequency content and the sample of receiver functions analysed). To address this parameter sensitivity issue, we develop an H–κ approach in which cluster analysis selects a final solution from 1000 individual H–κ results, each calculated using randomly selected receiver functions, and H–κ input parameters. 10 quality control criteria that variously assess the final numerical result, the receiver function data set, and the extent to which the results are tightly clustered, are used to assess the reliability of H–κ stacking at a station. Analysis of synthetic data sets indicates H–κ works reliably when the Moho is sharp and intracrustal structure is lacking but is less successful when the Moho is gradational. Limiting the frequency content of receiver functions can improve the H–κ solutions in such settings, provided intracrustal structure is simple. In cratonic Canada, India and Australia, H–κ solutions generally cluster tightly, indicative of simple crust and a sharp Moho. In contrast, on the Ethiopian plateau, where Palaeogene flood-basalts overlie marine sediments, H–κ results are unstable and erroneous. For stations that lie on thinner flood-basalt outcrops, and/or in regions where Blue Nile river incision has eroded through to the sediments below, limiting the receiver function frequency content to longer periods improves the H–κ solution and reveals a 6–10 km gradational Moho, readily interpreted as a lower crustal intrusion layer at the base of a mafic (VP/VS = 1.77–1.87) crust. Moving off the flood-basalt province, H–κ results are reliable and the crust is thinner and more felsic (VP/VS = 1.70–1.77), indicating the lower crustal intrusion layer is confined to the region covered by flood-basaltic volcanism. Analysis of data from other tectonically complex settings (e.g. Japan, Cyprus) shows H–κ stacking results should be treated cautiously. Only in regions of relatively simple crust can H–κ stacking analysis be considered truly reliable.
The geological record of SE Canada spans more than 2.5 Ga, making it a natural laboratory for the study of crustal formation and evolution over time. We estimate the crustal thickness, Poisson's ratio, a proxy for bulk crustal composition, and shear velocity (Vs) structure from receiver functions at a network of seismograph stations recently deployed across the Archean Superior Craton, the Proterozoic Grenville, and the Phanerozoic Appalachian provinces. The bulk seismic crustal properties and shear velocity structure reveal a correlation with tectonic provinces of different ages: the post‐Archean crust becomes thicker, faster, more heterogeneous, and more compositionally evolved. This secular variation pattern is consistent with a growing consensus that crustal growth efficiency increased at the end of the Archean. A lack of correlation among elevation, Moho topography, and gravity anomalies within the Proterozoic belt is better explained by buoyant mantle support rather than by compositional variations driven by lower crustal metamorphic reactions. A ubiquitous ∼20 km thick high‐Vs lower crustal layer is imaged beneath the Proterozoic belt. The strong discontinuity at 20 km may represent the signature of extensional collapse of an orogenic plateau, accommodated by lateral crustal flow. Wide anorthosite massifs inferred to fractionate from a mafic mantle source are abundant in Proterozoic geology and are underlain by high‐Vs lower crust and a gradational Moho. Mafic underplating may have provided a source for these intrusions and could have been an important post‐Archean process stimulating mafic crustal growth in a vertical sense.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.