Aim The purpose of this study was to determine the changes in running mechanics that occur when highly trained runners run barefoot and in a minimalist shoe, and specifically if running in a minimalist shoe replicates barefoot running. Methods Ground reaction force data and kinematics were collected from 22 highly trained runners during overground running while barefoot and in three shod conditions (minimalist shoe, racing flat and the athlete's regular shoe). Three-dimensional net joint moments and subsequent net powers and work were computed using Newton-Euler inverse dynamics. Joint kinematic and kinetic variables were statistically compared between barefoot and shod conditions using a multivariate analysis of variance for repeated measures and standardised mean differences calculated. Results There were significant differences between barefoot and shod conditions for kinematic and kinetic variables at the knee and ankle, with no differences between shod conditions. Barefoot running demonstrated less knee flexion during midstance, an 11% decrease in the peak internal knee extension and abduction moments and a 24% decrease in negative work done at the knee compared with shod conditions. The ankle demonstrated less dorsiflexion at initial contact, a 14% increase in peak power generation and a 19% increase in the positive work done during barefoot running compared with shod conditions. Conclusions Barefoot running was different to all shod conditions. Barefoot running changes the amount of work done at the knee and ankle joints and this may have therapeutic and performance implications for runners.
The purpose of this study was to investigate the effect stride length has on ankle biomechanics of the leading leg with reference to the potential risk of injury in cricket fast bowlers. Ankle joint kinematic and kinetic data were collected from 51 male fast bowlers during the stance phase of the final delivery stride. The bowling cohort comprised national under-19, first class and international-level athletes. Bowlers were placed into either Short, Average or Long groups based on final stride length, allowing statistical differences to be measured. A multivariate analysis of variance with a Bonferroni post-hoc correction (α = 0.05) revealed significant differences between peak plantarflexion angles (Short-Long P = 0.005, Average and Long P = 0.04) and negative joint work (Average-Long P = 0.026). This study highlighted that during fast bowling the ankle joint of the leading leg experiences high forces under wide ranges of movement. As stride length increases, greater amounts of negative work and plantarflexion are experienced. These increases place greater loads on the ankle joint and move the foot into positions that make it more susceptible to injuries such as posterior impingement syndrome.
The aim of this study was to determine the effect of delivery stride length on the performance outcomes of ball release speed, accuracy and ball release height within a large cohort of elite male cricket fast bowlers. Data for this observational, cross-sectional study were collected from national under 19, senior state and international level players over a four-year period. No statistically significant differences were found between the three stride length groups (short, medium and long). However, a functional difference in accuracy was evident between short and long stride length groups, with the long stride length group being less accurate (effect size (ES) ¼ 0.8; ES confidence interval (CI) ¼ 0.2-1.4). Therefore, it can be concluded, given the results of the current study and previous injury-related research, that in no way is it advantageous for bowlers to have a stride length that exceeds the recommended 75-85% of standing height.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.