Enterococci are robust gram-positive bacteria that are found in a variety of surroundings and that cause a significant number of healthcare-associated infections. The genus possesses a high-efficiency pheromone-responsive plasmid (PRP) transfer system for genetic exchange that allows antimicrobial-resistance determinants to spread within bacterial populations. The pCF10 plasmid system is the best characterised, and although other PRP systems are structurally similar, they lack exact functional homologues of pCF10-encoded genes. In this review, we provide an overview of the enterococcal PRP systems, incorporating functional details for the less-well-defined systems. We catalogue the virulence-associated elements of the PRPs that have been identified to date, and we argue that this reinforces the requirement for elucidation of the less studied systems.
The Enterococci are a resilient collection of species, found in the human intestine, river sediment and even certain cheeses. Human infection by this genus is dominated by E. faecalis and E. faecium. Vancomycin resistant enterococci (VRE) are associated with higher mortality rates over non-VRE strains. Enterococci can utilise the highly efficient pheromone responsive plasmid (PRP) system to transfer plasmid DNA between cells. Plasmid containing donor cells respond to small peptide pheromones (7–8 amino acids) and transfer plasmid DNA to pheromone-producing plasmid-free recipient cells. PRP can encode antibiotic resistance (including vancomycin) and virulence enhancing factors. Investigation into the PRP system between donor and recipient E. faecalis environmental isolates has indicated a 40 % decrease in PRP transfer in colder environments. Additionally, PRP efficiencies under other conditions, including in presence of synthetic pheromone peptides, have been calculated. Future assays will utilise pheromone imitative fluorescently labelled synthetic peptides to visualise the pheromone binding receptor (PrgZ) on the E. faecalis donor cell membrane. Later experiments will focus on varying the synthetic pheromone amino acid composition so to interfere with the PRP system machinery, with the aim of reducing PRP transfer efficiency or preventing PRP transfer completely.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.