Effects of biodiversity on ecosystem functioning: a consensus of current knowledge AbstractHumans are altering the composition of biological communities through a variety of activities that increase rates of species invasions and species extinctions, at all scales, from local to global. These changes in components of the Earth's biodiversity cause concern for ethical and aesthetic reasons, but they also have a strong potential to alter ecosystem properties and the goods and services they provide to humanity. Ecological experiments, observations, and theoretical developments show that ecosystem properties depend greatly on biodiversity in terms of the functional characteristics of organisms present in the ecosystem and the distribution and abundance of those organisms over space and time. Species effects act in concert with the effects of climate, resource availability, and disturbance regimes in influencing ecosystem properties. Human activities can modify all of the above factors; here we focus on modification of these biotic controls.The scientific community has come to a broad consensus on many aspects of the relationship between biodiversity and ecosystem functioning, including many points relevant to management of ecosystems. Further progress will require integration of knowledge about biotic and abiotic controls on ecosystem properties, how ecological communities are structured, and the forces driving species extinctions and invasions. To strengthen links to policy and management, we also need to integrate our ecological knowledge with understanding of the social and economic constraints of potential management practices. Understanding this complexity, while taking strong steps to minimize current losses of species, is necessary for responsible management of Earth's ecosystems and the diverse biota they contain.Based on our review of the scientific literature, we are certain of the following conclusions:1)Species' functional characteristics strongly influence ecosystem properties. Functional characteristics operate in a variety of contexts, including effects of dominant species, keystone species, ecological engineers, and interactions among species (e.g., competition, facilitation, mutualism, disease, and predation). Relative abundance alone is not always a good predictor of the ecosystem-level importance of a species, as even relatively rare species (e.g., a keystone predator) can strongly influence pathways of energy and material flows.2)Alteration of biota in ecosystems via species invasions and extinctions caused by human activities has altered ecosystem goods and services in many well-documented cases. Many of these changes are difficult, expensive, or impossible to reverse or fix with technological solutions.3)The effects of species loss or changes in composition, and the mechanisms by which the effects manifest themselves, can differ among ecosystem properties, ecosystem types, and pathways of potential community change.4)Some ecosystem properties are initially insensitive to species loss because (a...
Although many theoretical and observational studies suggest that diverse systems are more resistant to invasion by novel species than are less diverse systems, experimental data are uncommon. In this experiment, I manipulated the functional group richness and composition of a grassland community to test two related hypotheses: (1) Diversity and invasion resistance are positively related through diversity’s effects on the resources necessary for invading plants’ growth. (2) Plant communities resist invasion by species in functional groups already present in the community. To test these hypotheses, I removed plant functional groups (forbs, C3 graminoids, and C4 graminoids) from existing grassland vegetation to create communities that contained all possible combinations of one, two, or three functional groups. After three years of growth, I added seeds of 16 different native prairie species (legumes, nonleguminous forbs, C3 graminoids, and C4 graminoids) to a 1 × 1 m portion of each 4 × 8 m plot. Overall invasion success was negatively related to resident functional group richness, but there was only weak evidence that resident species repelled functionally similar invaders. A weak effect of functional group richness on some resources did not explain the significant diversity–invasibility relationship. Other factors, particularly the different responses of resident functional groups to the initial disturbance of the experimental manipulation, seem to have been more important to community invasibility.
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.. Ecological Society of America is collaborating with JSTOR to digitize, preserve and extend access to Ecology.Abstract. Although many theoretical and observational studies suggest that diverse systems are more resistant to invasion by novel species than are less diverse systems, experimental data are uncommon. In this experiment, I manipulated the functional group richness and composition of a grassland community to test two related hypotheses: (1) Diversity and invasion resistance are positively related through diversity's effects on the resources necessary for invading plants' growth. (2) Plant communities resist invasion by species in functional groups already present in the community. To test these hypotheses, I removed plant functional groups (forbs, C3 graminoids, and C4 graminoids) from existing grassland vegetation to create communities that contained all possible combinations of one, two, or three functional groups. After three years of growth, I added seeds of 16 different native prairie species (legumes, nonleguminous forbs, C3 graminoids, and C4 graminoids) to a 1 X 1 m portion of each 4 X 8 m plot. Overall invasion success was negatively related to resident functional group richness, but there was only weak evidence that resident species repelled functionally similar invaders. A weak effect of functional group richness on some resources did not explain the significant diversity-invasibility relationship. Other factors, particularly the different responses of resident functional groups to the initial disturbance of the experimental manipulation, seem to have been more important to community invasibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.