Hyperphosphorylation of microtubule-associated proteins such as tau and neurofilament may underlie the cytoskeletal abnormalities and neuronal death seen in several neurodegenerative diseases including Alzheimer's disease. One potential mechanism of microtubule-associated protein hyperphosphorylation is augmented activity of protein kinases known to associate with microtubules, such as cdk5 or GSK3. Here we show that tau and neurofilament are hyperphosphorylated in transgenic mice that overexpress human p25, an activator of cdk5. The p25 transgenic mice display silver-positive neurons using the Bielschowsky stain. Disturbances in neuronal cytoskeletal organization are apparent at the ultrastructural level. These changes are localized predominantly to the amygdala, thalamus͞hypothalamus, and cortex. The p25 transgenic mice display increased spontaneous locomotor activity and differences from control in the elevated plus-maze test. The overexpression of an activator of cdk5 in transgenic mice results in increased cdk5 activity that is sufficient to produce hyperphosphorylation of tau and neurofilament as well as cytoskeletal disruptions reminiscent of Alzheimer's disease and other neurodegenerative diseases. Although many protein kinases phosphorylate tau at ADrelevant epitopes in vitro (reviewed in ref.2), only two have been copurified with microtubules, GSK3 and cdk5 (3, 4). To our knowledge, only these two kinases will phosphorylate tau in a cellular environment (e.g., refs. 5 and 6). We chose to focus on cdk5 because it is active predominantly in neurons whereas GSK3 plays a role in energy metabolism and is active in all cells. cdk5 is a member of the cyclin-dependent protein kinase gene family. Rather than cyclins, cdk5 associates with the positive allosteric regulators p35 (7), amino-terminal proteolytic fragments of p35 (e.g., p25; ref. 8), and p39 (9). These proteins share minimal amino acid sequence homology to cyclins, but the mechanism of activation of cdk5 by p25͞35 may be similar to the activation of cdk2 by cyclin A (10). p25͞35 is expressed predominantly in neurons, implying that most cdk5 activity is concentrated in neuronal structures (7,8). cdk5 plays a pivotal role in neuronal development as evidenced by the abnormal corticogenesis and perinatal lethality of cdk5 knockout mice (11) and the disturbances in neuronal migration and early death in p35 knockout mice (12). A number of potential cdk5 substrates have been identified and most are consistent with a putative role in neurite outgrowth and plasma membrane dynamics. These include cytoskeletal proteins such as tau and neurofilament (e.g., refs. 13 and 14) and synaptic vesicle proteins (15, 16). To clarify the potential role of cdk5 in neurodegenerative diseases in vivo, we overexpressed human p25 in the brains of transgenic mice to determine whether increased cdk5 activity would lead to hyperphosphorylation of tau and neurofilament and͞or cytoskeletal disturbances. Materials and MethodsAnimal Handling. All experimentation was performed under...
Following acute chemical injury, hepatocytes are generally more resistant to toxicant re-exposure. Alterations in expression of hepatobiliary transport systems may contribute to this resistance by preventing accumulation of potentially toxic chemicals. Previous data demonstrate the concomitant reduction of uptake transporter and induction of efflux transporter mRNA during chemical liver injury. The present study further characterizes the expression of multidrug resistance-associated proteins 1-4 (Mrp1-4), breast cancer resistance protein (Bcrp) and sodium-taurocholate co-transporting polypeptide (Ntcp) in mouse liver following administration of the hepatotoxicants acetaminophen (APAP) and carbon tetrachloride (CCl4). Mice received hepatotoxic doses of APAP (400 mg/kg), CCl4 (10 or 25 microl/kg), or vehicle, ip. Livers were collected at 6, 24, and 48 h for Western blot quantification and immunofluorescence analysis. Protein expression of Bcrp was unchanged with treatment. Ntcp levels were preserved in APAP-exposed livers and reduced to 30-50% of control after CCl4. Conversely, Mrp1-4 expression was differentially up-regulated. CCl4 increased Mrp1 (3.5-fold), Mrp2 (1.4-fold), and Mrp4 (26-fold) while reducing Mrp3 levels to 20% of control. Administration of APAP enhanced expression of Mrp2 (1.6-fold), Mrp3 (3.5-fold), and Mrp4 (16-fold). Immunostaining of liver sections obtained 48 h after hepatotoxicant treatment confirmed expression patterns of a subset of transporters (Bcrp, Ntcp, Mrp3, and Mrp4). Double immunofluorescence imaging demonstrated the simultaneous down-regulation of Ntcp and up-regulation of Mrp4 in hepatocytes adjacent to the central vein after CCl4. Altered expression of transporters may reduce the overall chemical burden of an injured liver during recovery and contribute to the resistance of hepatocytes to subsequent toxicant exposure.
ABSTRACT:Alterations in transporter expression may represent a compensatory mechanism of damaged hepatocytes to reduce accumulation of potentially toxic compounds. The present study was conducted to investigate the expression of hepatobiliary efflux transporters in livers from patients after toxic acetaminophen (APAP) ingestion, with livers from patients with primary biliary cirrhosis (PBC) serving as positive controls. mRNA and protein expression of multidrug resistance-associated protein (MRP) 1-6, multidrug resistance protein (MDR) 1-3/P-glycoprotein (P-gp), and breast cancer resistance protein (BCRP) in normal (n ؍ 6), APAP overdose (n ؍ 5), and PBC (n ؍ 6) human liver samples were determined by branched DNA and Western blot analysis, respectively. Double immunohistochemical staining of P-gp and proliferating cell nuclear antigen (PCNA), a marker of proliferation, was performed on paraffin-embedded tissue sections. Compared with normal liver specimens, MRP1 and MRP4 mRNA levels were elevated after APAP overdose and in PBC. Up-regulation of MRP5, MDR1, and BCRP mRNA occurred in PBC livers. Protein levels of MRP4, MRP5, BCRP, and P-gp were increased in both disease states, with MRP1 and MRP3 protein also being induced in PBC. Increased P-gp protein was confirmed immunohistochemically and was found to localize to areas of PCNA-positive hepatocytes, which were detected in APAP overdose and PBC livers. The findings from this study demonstrate that hepatic efflux transporter expression is up-regulated in cases of APAP-induced liver failure and PBC. This adaptation may aid in reducing retention of byproducts of cellular injury and bile constituents within hepatocytes. The close proximity of P-gp and PCNApositive hepatocytes during liver injury suggests that along with cell regeneration, increased efflux transporter expression is a critical response to hepatic damage to protect the liver from additional insult.The incidence of acetaminophen (APAP) overdose, which frequently leads to severe liver injury at supratherapeutic doses, has been steadily increasing in the United States. The number of APAP-related cases of liver failure has increased from 39% (1998 -2001) to nearly 50% (2003) of all cases of acute liver failure, with well over 100,000 cases of APAP overdose reported annually in the United States (Lee, 2004). Although APAP poisoning is often intentional, an increased incidence of unintentional overdose cases is gaining attention. A recent study reported that 50% of APAP overdose cases were attributable to unintentional exposure, most commonly because of APAP overutilization in multiple over-the-counter and prescription preparations (Larson et al., 2005).Mouse models of APAP-induced hepatotoxicity are widely used to recapitulate human exposures because of the similarities in APAP bioactivation and patterns of liver injury between mice and humans. Similar doses of APAP cause hepatotoxicity in both species, and the liver injury is dose-dependant (Mitchell et al., 1973;Davis et al., 1974). Another striking...
The Aurora family of highly related serine/threonine kinases plays a key role in the regulation of mitosis. Aurora1 and Aurora2 play important but distinct roles in the G 2 and M phases of the cell cycle and are essential for proper chromosome segregation and cell division. Overexpression and amplification of Aurora2 have been reported in different tumor types, including breast, colon, pancreatic, ovarian, and gastric cancer. PF-03814735 is a novel, potent, orally bioavailable, reversible inhibitor of both Aurora1 and Aurora2 kinases that is currently in phase I clinical trials for the treatment of advanced solid tumors. In intact cells, the inhibitory activity of PF-03814735 on the Aurora1 and Aurora2 kinases reduces levels of phospho-Aurora1, phosphohistone H3, and phospho-Aurora2. PF-03814735 produces a block in cytokinesis, resulting in inhibition of cell proliferation and the formation of polyploid multinucleated cells. Although PF-03814735 produces significant inhibition of several other protein kinases, the predominant biochemical effects in cellular assays are consistent with inhibition of Aurora kinases. Once-daily oral administration of PF-03814735 to mice bearing human xenograft tumors produces a reduction in phosphohistone H3 in tumors at doses that are tolerable and that result in significant inhibition of tumor growth. The combination of PF-03814735 and docetaxel in xenograft mouse tumor models shows additive tumor growth inhibition. These results support the clinical evaluation of PF-03814735 in cancer patients.Mol Cancer Ther; 9(4); 883-94. ©2010 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.