Metal-ligand interactions are critical components of metalloprotein assembly, folding, stability, electrochemistry, and catalytic function. Research over the past 3 decades on the interaction of metals with peptide and protein ligands has progressed from the characterization of amino acid-metal and polypeptide-metal complexes to the design of folded protein scaffolds containing multiple metal cofactors. De novo metalloprotein design has emerged as a valuable tool both for the modular synthesis of these complex metalloproteins and for revealing the fundamental tenets of metalloprotein structure-function relationships. Our research has focused on using the coordination chemistry of de novo designed metalloproteins to probe the interactions of metal cofactors with protein ligands relevant to biological phenomena. Herein, we present a detailed thermodynamic analysis of Fe(II), Co(II), Zn(II), and[4Fe-4S]2(+/+) binding to IGA, a 16 amino acid peptide ligand containing four cysteine residues, H2N-KLCEGG-CIGCGAC-GGW-CONH2. These studies were conducted to delineate the inherent metal-ion preferences of this unfolded tetrathiolate peptide ligand as well as to evaluate the role of the solution pH on metal-peptide complex speciation. The [4Fe-4S]2(+/+)-IGA complex is both an excellent peptide-based synthetic analogue for natural ferredoxins and is flexible enough to accommodate mononuclear metal-ion binding. Incorporation of a single ferrous ion provides the FeII-IGA complex, a spectroscopic model of a reduced rubredoxin active site that possesses limited stability in aqueous buffers. As expected based on the Irving-Williams series and hard-soft acid-base theory, the Co(II) and Zn(II) complexes of IGA are significantly more stable than the Fe(II) complex. Direct proton competition experiments, coupled with determinations of the conditional dissociation constants over a range of pH values, fully define the thermodynamic stabilities and speciation of each MII-IGA complex. The data demonstrate that FeII-IGA and CoII-IGA have formation constant values of 5.0 x 10(8) and 4.2 x 10(11) M-1, which are highly attenuated at physiological pH values. The data also evince that the formation constant for ZnII-IGA is 8.0 x 10(15) M-1, a value that exceeds the tightest natural protein Zn(II)-binding affinities. The formation constant demonstrates that the metal-ligand binding energy of a ZnII(S-Cys)4 site can stabilize a metalloprotein by -21.6 kcal/mol. Rigorous thermodynamic analyses such as those demonstrated here are critical to current research efforts in metalloprotein design, metal-induced protein folding, and metal-ion trafficking.
l-Penicillamine (Pen) has been investigated as a ligand for metalloprotein design by examining the binding of Co(II) to the sequence NH(2)-KL(Pen)EGG.(Pen)IG(Pen)GA(Pen).GGW-CONH(2). For comparison, we have studied Co(II) binding to the analogous sequence with Cys ligands, the ferredoxin maquette ligand IGA that was originally designed to bind a [4Fe-4S] cluster. The Co(II) affinity and UV-vis spectroscopic properties of IGA indicate formation of a pseudotetrahedral tetrathiolate ligated Co(II). In contrast, IGA-Pen showed formation of a pseudotetrahedral complex with Co(II) bound by three Pen ligands and an exogenous H(2)O. EXAFS data on both Co(II) complexes confirms not only the proposed primary coordination spheres but also shows six Co(II)-C(beta) methyl group distances in Co(II)-IGA-Pen. These results demonstrate that ligand sterics in simple peptides can be designed to provide asymmetric coordination spheres such as those commonly observed in natural metalloproteins.
It takes two to transfer: A synthetic CuI metalloprotein undergoes bimolecular photoinduced electron transfer in the inverted Marcus regime. The buried CuI4S4(N/O)4 cofactor (purple) has a high reorganization energy and experiences weak electronic coupling to electron acceptors (Q) in the bulk solvent. This lowers kET below the diffusion limit and allows observation of inverted Marcus behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.