Across diverse taxa, selfing species have evolved independently from outcrossing species thousands of times. The transition from outcrossing to selfing significantly decreases the effective population size, effective recombination rate, and heterozygosity within a species. These changes lead to a reduction in genetic diversity, and therefore adaptive potential, by intensifying the effects of random genetic drift and linked selection. Within the nematode genus Caenorhabditis , selfing has evolved at least three times and all three species, including in the model organism Caenorhabditis elegans , show substantially reduced genetic diversity relative to outcrossing species. Selfing and outcrossing Caenorhabditis species are often found in the same niches, but we still do not know how selfing species with limited genetic diversity can adapt to these environments. Here, we examine the whole-genome sequences from 609 wild C. elegans strains isolated worldwide and show that genetic variation is concentrated in punctuated hyper-divergent regions that cover 20% of the C. elegans reference genome. These regions are enriched in environmental response genes that mediate sensory perception, pathogen response, and xenobiotic stress response. Population genomic evidence suggests that genetic diversity in these regions has been maintained by long-term balancing selection. Using long- read genome assemblies for 15 wild strains, we show that hyper-divergent haplotypes contain unique sets of genes and show levels of divergence comparable to levels found between Caenorhabditis species that diverged millions of years ago. These results provide an example for how species can avoid the evolutionary “dead end” associated with selfing.
In 1893 August Weismann proposed that information about the environment could not pass from somatic cells to germ cells1, a hypothesis now known as the Weismann barrier. However, recent studies have indicated that parental exposure to environmental stress can modify progeny physiology2–7 and that parental stress can contribute to progeny disorders8. The mechanisms regulating these phenomena are poorly understood. We report that the nematode C. elegans can protect itself from osmotic stress by entering a state of arrested development and can protect its progeny from osmotic stress by increasing the expression of the glycerol biosynthetic enzyme GPDH-2 in progeny. Both of these protective mechanisms are regulated by insulin-like signalling: insulin-like signalling to the intestine regulates developmental arrest, while insulin-like signalling to the maternal germline regulates glycerol metabolism in progeny. Thus, there is a heritable link between insulin-like signalling to the maternal germline and progeny metabolism and gene expression. We speculate that analogous modulation of insulin-like signalling to the germline is responsible for effects of the maternal environment on human diseases that involve insulin signalling, such as obesity and type-2 diabetes8.
daf-16/FoxO is required to survive starvation in Caenorhabditis elegans, but how daf-16IFoxO promotes starvation resistance is unclear. We show that daf-16/FoxO restructures carbohydrate metabolism by driving carbon flux through the glyoxylate shunt and gluconeogenesis and into synthesis of trehalose, a disaccharide of glucose. Trehalose is a well-known stress protectant, capable of preserving membrane organization and protein structure during abiotic stress. Metabolomic, genetic, and pharmacological analyses confirm increased trehalose synthesis and further show that trehalose not only supports survival as a stress protectant but also serves as a glycolytic input. Furthermore, we provide evidence that metabolic cycling between trehalose and glucose is necessary for this dual function of trehalose. This work demonstrates that daf-16/FoxO promotes starvation resistance by shifting carbon metabolism to drive trehalose synthesis, which in turn supports survival by providing an energy source and acting as a stress protectant.
Phenotypic plasticity is facilitated by epigenetic regulation, and remnants of such regulation may persist after plasticityinducing cues are gone. However, the relationship between plasticity and transgenerational epigenetic memory is not understood. Dauer diapause in Caenorhabditis elegans provides an opportunity to determine how a plastic response to the early-life environment affects traits later in life and in subsequent generations. We report that, after extended diapause, postdauer worms initially exhibit reduced reproductive success and greater interindividual variation. In contrast, F3 progeny of postdauers display increased starvation resistance and lifespan, revealing potentially adaptive transgenerational effects. Transgenerational effects are dependent on the duration of diapause, indicating an effect of extended starvation. In agreement, RNA-seq demonstrates a transgenerational effect on nutrient-responsive genes. Further, postdauer F3 progeny exhibit reduced gene expression plasticity, suggesting a trade-off between plasticity and epigenetic memory. This work reveals complex effects of nutrient stress over different time scales in an animal that evolved to thrive in feast and famine.
Summary paragraphThe mating system of a species profoundly influences its evolutionary trajectory1–3. Across diverse taxa, selfing species have evolved independently from outcrossing species thousands of times4. The transition from outcrossing to selfing significantly decreases the effective population size, effective recombination rate, and heterozygosity within a species5. These changes lead to a reduction in the genetic diversity, and therefore adaptive potential, by intensifying the effects of random genetic drift and linked selection6,7. Selfing has evolved at least three times independently in the nematode genus Caenorhabditis8, including in the model organism Caenorhabditis elegans, and all three selfing species show substantially reduced genetic diversity relative to outcrossing species8,9. Selfing and outcrossing Caenorhabditis species are often found in the same niches, but we still do not know how selfing species with limited genetic diversity can adapt to and inhabit these same diverse environments. Here, we discovered previously uncharacterized levels and patterns of genetic diversity by examining the whole-genome sequences from 609 wild C. elegans strains isolated worldwide. We found that genetic variation is concentrated in punctuated hyper-divergent regions that cover 20% of the C. elegans reference genome. These regions are enriched in environmental response genes that mediate sensory perception, pathogen response, and xenobiotic stress. Population genomic evidence suggests that these regions have been maintained by balancing selection. Using long-read genome assemblies for 15 wild isolates, we found that hyper-divergent haplotypes contain unique sets of genes and show levels of divergence comparable to that found between Caenorhabditis species that diverged millions of years ago. Taken together, these results suggest that ancient genetic diversity present in the outcrossing ancestor of C. elegans has been maintained by long-term balancing selection since the evolution of selfing. These results provide an example for how species can avoid the evolutionary “dead end” associated with selfing by maintaining ancestral genetic diversity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.