Misfolded α-synuclein amyloid fibrils are the principal components of Lewy bodies and neurites, hallmarks of Parkinson’s disease (PD). Here we present a high-resolution structure of an α-synuclein fibril, in a form that induces robust pathology in primary neuronal culture, determined by solid-state NMR spectroscopy and validated by electron microscopy and X-ray fiber diffraction. Over 200 unique long-range distance restraints define a consensus structure with common amyloid features including parallel in-register β-sheets and hydrophobic core residues, but also substantial complexity, arising from diverse structural features: an intermolecular salt bridge, a glutamine ladder, close backbone interactions involving small residues, and several steric zippers stabilizing a novel, orthogonal Greek-key topology. These characteristics contribute to the robust propagation of this fibril form, as evidenced by structural similarity of early-onset PD mutants. The structure provides a framework for understanding the interactions of α-synuclein with other proteins and small molecules to diagnose and treat PD.
A conformational isoform of the mammalian prion protein (PrP Sc ) is the sole component of the infectious pathogen that causes the prion diseases. We have obtained X-ray fiber diffraction patterns from infectious prions that show cross- diffraction: meridional intensity at 4.8 Å resolution, indicating the presence of  strands running approximately at right angles to the filament axis and characteristic of amyloid structure. Some of the patterns also indicated the presence of a repeating unit along the fiber axis, corresponding to four -strands. We found that recombinant (rec) PrP amyloid differs substantially from highly infectious brainderived prions, both in structure as demonstrated by the diffraction data, and in heterogeneity as shown by electron microscopy. In addition to the strong 4.8 Å meridional reflection, the recPrP amyloid diffraction is characterized by strong equatorial intensity at approximately 10.5 Å, absent from brain-derived prions, and indicating the presence of stacked -sheets. Synthetic prions recovered from transgenic mice inoculated with recPrP amyloid displayed structural characteristics and homogeneity similar to those of naturally occurring prions. The relationship between the structural differences and prion infectivity is uncertain, but might be explained by any of several hypotheses: only a minority of recPrP amyloid possesses a replication-competent conformation, the majority of recPrP amyloid has to undergo a conformational maturation to acquire replication competency, or inhibitory forms of recPrP amyloid interfere with replication during the initial transmission.amyloid ͉ protein ͉ neurodegeneration ͉ PrP ͉ -helix
Metazoan retromer (VPS26/VPS35/VPS29) associates with sorting nexins on endosomal tubules to sort proteins to the trans-Golgi network or plasma membrane. Mechanisms of metazoan retromer assembly remain undefined. We combine single-particle cryoelectron microscopy with biophysical methods to uncover multiple oligomer structures. 2D class averages reveal mammalian heterotrimers; dimers of trimers; tetramers of trimers; and flat chains. These species are further supported by biophysical solution studies. We provide reconstructions of all species, including key sub-structures (~5 Å resolution). Local resolution variation suggests that heterotrimers and dimers adopt multiple conformations. Our structures identify a flexible, highly conserved electrostatic dimeric interface formed by VPS35 subunits. We generate structure-based mutants to disrupt this interface in vitro. Equivalent mutations in yeast demonstrate a mild cargo-sorting defect. Our data suggest the metazoan retromer is an adaptable and plastic scaffold that accommodates interactions with different sorting nexins to sort multiple cargoes from endosomes their final destinations.
Flexible filamentous viruses make up a large fraction of the known plant viruses, but in comparison with those of other viruses, very little is known about their structures. We have used fiber diffraction, cryo-electron microscopy, and scanning transmission electron microscopy to determine the symmetry of a potyvirus, soybean mosaic virus; to confirm the symmetry of a potexvirus, potato virus X; and to determine the low-resolution structures of both viruses. We conclude that these viruses and, by implication, most or all flexible filamentous plant viruses share a common coat protein fold and helical symmetry, with slightly less than 9 subunits per helical turn.Flexible filamentous plant viruses include at least 19 recognized genera (22), almost all in three families of singlestranded, positive-sense RNA viruses, the Potyviridae, the Flexiviridae, and the Closteroviridae. Members of the family Potyviridae account for almost a third of the total known plant virus species (22) and are responsible for more than half the viral crop damage in the world (37), infecting most economically important crops (32). Members of the family Flexiviridae (2), and particularly of the large genus Potexvirus, are also of considerable significance to agriculture (42). Both families show great potential for biotechnological applications, including protein expression and vaccine production (12, 54). Despite their importance, however, little is known about the structures of any of the flexible filamentous plant viruses, in sharp contrast to the amount of data on the rigid tobamoviruses (48,63) or the icosahedral plant viruses (15); flexibility, instability, and in many cases low levels of expression have made these viruses particularly intractable to structural studies. Structural and evolutionary relationships among the flexible filamentous plant viruses have been suggested (18,47,56,60), but there is very little sequence homology between the coat proteins of viruses in the different families, and there has hitherto been no structural support for such relationships at the level of either viral symmetry or coat protein folding. Indeed, reports of viral symmetry until now appeared to contradict hypotheses of evolutionary relationships.Soybean mosaic virus (SMV) is a potyvirus, that is, a member of the genus Potyvirus, the largest genus in the family Potyviridae (3). SMV is a major pathogen of soybeans, transmitted efficiently through seed and by aphids in a nonpersistent manner; yield losses as high as 35% have been reported (30). Despite dramatic morphological differences, members of the family resemble the icosahedral plant comoviruses and animal picornaviruses in genomic organization and replication strategy (32). Early electron microscopic observations found the potyviruses to be about 7,500 Å long and 120 Å in diameter, with helical pitches of about 34 Å (44, 60). A fiber diffraction study (51) of the tritimovirus wheat streak mosaic virus (WSMV) suggested that WSMV has 6.9 subunits per turn of the viral helix, but there was consider...
Fiber diffraction patterns have been obtained from oriented sols of potato virus X. Orientation in the sols was greatly improved by a combination of centrifugation and exposure to very high magnetic fields. Diffraction patterns were also improved by using a very finely collimated synchrotron X-ray beam. The diffraction patterns show that there are 8.9 subunits in each turn of the viral helix and that intersecting sets of deep grooves mark the viral surface, with one set running almost longitudinally and the other following the simple viral helix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.