S1P has been proposed to contribute to cancer progression by regulating tumor proliferation, invasion, and angiogenesis. We developed a biospecific monoclonal antibody to S1P to investigate its role in tumorigenesis. The anti-S1P mAb substantially reduced tumor progression and in some cases eliminated measurable tumors in murine xenograft and allograft models. Tumor growth inhibition was attributed to antiangiogenic and antitumorigenic effects of the antibody. The anti-S1P mAb blocked EC migration and resulting capillary formation, inhibited blood vessel formation induced by VEGF and bFGF, and arrested tumor-associated angiogenesis. The anti-S1P mAb also neutralized S1P-induced proliferation, release of proangiogenic cytokines, and the ability of S1P to protect tumor cells from apoptosis in several tumor cell lines, validating S1P as a target for therapy.
Sphingosine-1-phospate (S1P) is a bioactive lysophospholipid signaling molecule that serves important roles in normal development and physiological processes, including modulating the immune, cardiovascular, and central nervous systems ( 1-4 ). S1P is a key player in the sphingolipid signaling cascade and is produced from ceramide (CER) and sphingosine (SPH) through the action of sphingosine kinase (SPHK). While CER and SPH are intracellular promoters of apoptosis, S1P has opposite action and, in general, protects cells from apoptotic stimuli. Several experimental fi ndings from independent research groups implicate S1P as a key mediator of multiple survival and growth-promoting pathways ( 5 ). The extracellular functions of S1P are initiated by the binding of the bioactive lipid to a set of fi ve G protein-coupled receptors (GPCRs) belonging to the S1P receptor family ( 6 ). The balance between CER/SPH levels versus S1P provides a rheostat that determines whether a cell is sent into the death Abstract Sphingosine-1-phosphate (S1P) is a pleiotropic bioactive lipid involved in multiple physiological processes. Importantly, dysregulated S1P levels are associated with several pathologies, including cardiovascular and infl ammatory diseases and cancer. This report describes the successful production and characterization of a murine monoclonal antibody, LT1002, directed against S1P, using novel immunization and screening methods applied to bioactive lipids. We also report the successful generation of LT1009, the humanized variant of LT1002, for potential clinical use. Both LT1002 and LT1009 have high affi nity and specifi city for S1P and do not cross-react with structurally related lipids. Using an in vitro bioassay, LT1002 and LT1009 were effective in blocking S1P-mediated release of the pro-angiogenic and prometastatic cytokine, interleukin-8, from human ovarian carcinoma cells, showing that both antibodies can outcompete S1P receptors in binding to S1P. In vivo anti-angiogenic activity of all antibody variants was demonstrated using the murine choroidal neovascularization model. Importantly, intravenous administration of the antibodies showed a marked effect on lymphocyte traffi cking. The resulting lead candidate, LT1009, has been formulated for Phase 1 clinical trials in cancer and age-related macular degeneration. The anti-S1P antibody shows promise as a novel, fi rst-in-class therapeutic acting as a "molecular sponge" to selectively deplete S1P from blood and other compartments where pathological S1P levels have been implicated in disease progression or in disorders where immune modulation may be benefi cial.
The efficacy of novel monoclonal antibodies that neutralize the pro-angiogenic mediator, sphingosine-1-phosphate (S1P), were tested using in vitro and in vivo angiogenesis models, including choroidal neovascularization (CNV) induced by laser disruption of Bruch’s membrane. S1P receptor levels in human brain choroid plexus endothelial cells (CPEC), human lung microvascular endothelial cells, human retinal vascular endothelial cells, and circulating endothelial progenitor cells were examined by semi-quantitative PCR. The ability of murine or humanized anti-S1P monoclonal antibodies (mAbs) to inhibit S1P-mediated microvessel tube formation by CPEC on Matrigel was evaluated and capillary density in subcutaneous growth factor-loaded Matrigel plugs was determined following anti-S1P treatment. S1P promoted in vitro capillary tube formation in CPEC consistent with the presence of cognate S1P1–5 receptor expression by these cells and the S1P antibody induced a dose-dependent reduction in microvessel tube formation. In a murine model of laser-induced rupture of Bruch’s membrane, S1P was detected in posterior cups of mice receiving laser injury, but not in uninjured controls. Intravitreous injection of anti-S1P mAbs dramatically inhibited CNV formation and sub-retinal collagen deposition in all treatment groups (p < 0.05 compared to controls), thereby identifying S1P as a previously unrecognized mediator of angiogenesis and subretinal fibrosis in this model. These findings suggest that neutralizing S1P with anti-S1P mAbs may be a novel method of treating patients with exudative age-related macular degeneration by reducing angiogenesis and sub-retinal fibrosis, which are responsible for visual acuity loss in this disease.
Recent evidence indicates that sphingolipids are produced by the heart during hypoxic stress and by blood platelets during thrombus formation. It is therefore possible that sphingolipids may influence heart cell function by interacting with G-protein-coupled receptors of the Edg family. In the present study, it was found that sphingosine 1-phosphate (Sph1P), the prototypical ligand for Edg receptors, produced calcium overload in rat cardiomyocytes. The cDNA for Edg-1 was cloned from rat cardiomyocytes and, when transfected in an antisense orientation, effectively blocked Edg-1 protein expression and reduced the Sph1P-mediated calcium deregulation. Taken together, these results demonstrate that cardiomyocytes express an extracellular lipid-sensitive receptorsystem that can respond to sphingolipid mediators. Because the major source of Sph1P is from blood platelets, we speculate that Edg-mediated Sph1P negative inotropic and cardiotoxic effects may play important roles in acute myocardial ischemia where Sph1P levels are probably elevated in response to thrombus.
The localization of sarcolemmal proteins within the membrane can have a dramatic effect on excitation-contraction coupling. We examine the localization of the Na + -Ca 2+ exchanger, the dihydropyridine receptor, and other proteins involved in excitation-contraction coupling in rat heart using biochemical and immunolocalization techniques. Specifically, we assess the distribution of proteins within the lipid raft fraction of the sarcolemma. We find that the distribution of proteins in lipid raft fractions is very dependent on the solubilization technique. A common technique using sodium carbonate/pH 11 to solubilize non-lipid raft proteins was inappropriate for use with sarcolemmal membranes. Use of Triton X-100 was more efficacious as a solubilization agent. A large majority of the Na + -Ca 2+ exchanger, Na + /K + -ATPase, and plasma membrane Ca 2+ pump are not present in lipid rafts. In contrast, most adenosine A 1 receptors and dihydropyridine receptors were in lipid raft fractions. Most of the adenosine A 1 receptors could be co-immunoprecipitated with caveolin indicating a localization to caveolae (a subclass of lipid rafts). In contrast, the dihydropyridine receptors could not be co-immunoprecipitated with caveolin. Most biochemical data were confirmed by high resolution immunolocalization studies. Using correlation analysis, only a small fraction of the Na + -Ca 2+ exchangers colocalized with caveolin whereas a substantial fraction of dihydropyridine and adenosine A 1 receptors did colocalize with caveolin. The most pertinent findings are that the Na + -Ca 2+ exchanger and the dihydropyridine receptor are in separate sarcolemmal subcompartments. These spatial relationships may be relevant for understanding excitation-contraction coupling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.