Mammalian artificial chromosomes (MACs) provide a means to introduce large payloads of genetic information into the cell in an autonomously replicating, non-integrating format. Unique among MACs, the mammalian satellite DNA-based Artificial Chromosome Expression (ACE) can be reproducibly generated de novo in cell lines of different species and readily purified from the host cells' chromosomes. Purified mammalian ACEs can then be re-introduced into a variety of recipient cell lines where they have been stably maintained for extended periods in the absence of selective pressure. In order to extend the utility of ACEs, we have established the ACE System, a versatile and flexible platform for the reliable engineering of ACEs. The ACE System includes a Platform ACE, containing >50 recombination acceptor sites, that can carry single or multiple copies of genes of interest using specially designed targeting vectors (ATV) and a site-specific integrase (ACE Integrase). Using this approach, specific loading of one or two gene targets has been achieved in LMTK(-) and CHO cells. The use of the ACE System for biological engineering of eukaryotic cells, including mammalian cells, with applications in biopharmaceutical production, transgenesis and gene-based cell therapy is discussed.
The flap endonuclease, FEN1, is an evolutionarily conserved component of DNA replication from archaebacteria to humans. Based on in vitro results, it processes Okazaki fragments during replication and is involved in base excision repair. FEN1 removes the last primer ribonucleotide on the lagging strand and it cleaves a 5' flap that may result from strand displacement during replication or during base excision repair. Its biological importance has been revealed largely through studies in the yeast Saccharomyces cerevisiae where deletion of the homologous gene RAD27 results in genome instability and mutagen sensitivity. While the in vivo function of Rad27 has been well characterized through genetic and biochemical approaches, little is understood about the in vivo functions of human FEN1. Guided by our recent results with yeast RAD27, we explored the function of human FEN1 in yeast. We found that the human FEN1 protein complements a yeast rad27 null mutant for a variety of defects including mutagen sensitivity, genetic instability and the synthetic lethal interactions of a rad27 rad51 and a rad27 pol3-01 mutant. Furthermore, a mutant form of FEN1 lacking nuclease function exhibits dominant-negative effects on cell growth and genome instability similar to those seen with the homologous yeast rad27 mutation. This genetic impact is stronger when the human and yeast PCNA-binding domains are exchanged. These data indicate that the human FEN1 and yeast Rad27 proteins act on the same substrate in vivo. Our study defines a sensitive yeast system for the identification and characterization of mutations in FEN1.
Both trimellitic anhydride (TMA), a small molecular weight chemical, and ovalbumin (OVA), a reference protein allergen, cause asthma with eosinophilia. To test the hypothesis that different allergens elicit symptoms of asthma via different effector pathways, gene expression was compared in lungs of Balb/c mice sensitized with either TMA or OVA, followed by intratracheal challenge with TMA conjugated to mouse serum albumin (TMA-MSA) or OVA, respectively. Sensitized animals challenged with mouse serum albumin (MSA) alone were controls. Seventy-two hours after challenge, lung eosinophil peroxidase indicated that both allergens caused the same significant change in eosinophilia. Total RNA was isolated from lung lobes of 6-8 animals in each of four treatment groups and hybridized to Affymetrix U74Av2 GeneChips. False discovery rates (q-values) were calculated from an overall F test to identify candidate genes with differences in expression for the four groups. Using a q-value cutoff of 0.1, 853 probe sets had significantly different expression across the four treatment groups. Of these 853 probe sets, 376 genes had an Experimental/Control ratio of greater than 1.2 or less than 1/1.2 for either OVA- or TMA-treated animals, and 249 of the 376 genes were uniquely up- or down-regulated for OVA or TMA (i.e., differentially expressed with the allergen). qRT-PCR analysis of selected transcripts confirmed the gene expression analysis. Increases in both arginase transcript and enzyme activity were significantly greater in OVA-induced asthma compared to TMA-induced asthma. These data suggest that pathways of arginine metabolism and the importance of nitric oxide may differ in OVA- and TMA-induced asthma.
NOP16, also known as HSPC111, has been identified as a MYC and estrogen regulated gene in in vitro studies, hence coexpression levels were strongly correlated. Importantly, high expression of NOP16 was associated with poor clinical outcome in breast cancer patients. However, coexpression of NOP16, MYC and estrogen receptor (ESR1) varied widely in tumors and cell lines suggesting that transcriptional regulation differed according to pathological environments. The goal of this study was to determine the expression patterns of Nop16, Myc and Esr1 in murine mammary tumors with disparate histopathological and molecular features. We hypothesized that tumor environments with relatively high Myc levels would have different coexpression patterns than tumor environments with relatively low Myc levels. We measured levels of Myc and Nop16 mRNA and protein in tumors from WAP-c-myc mice that were of high grade and metastasized frequently. In contrast, Myc and Nop16 mRNA and proteins levels were significantly lower in the less aggressive tumors that developed in NRL-TGFα mice. Tumors from both mouse lines express ESR1 protein and we found that Esr1 mRNA levels correlated positively with Myc levels in both models. However, Myc and Nop16 transcript levels correlated positively only in tumors from NRL-TGFα mice. We identified prominent NOP16 protein in nuclei and less prominent staining in the cytoplasm of luminal cells of ducts and lobules from normal mammary glands as well as in hyperplasias and tumors obtained from NRL-TGFα mice. This staining pattern was reversed in tumors from WAP-c-Myc mice as nuclear staining was faint or absent and cytoplasmic staining more pronounced. In summary, the regulation of expression and localization of NOP16 varies in tumor environments with high versus low MYC levels and demonstrate the importance of stratifying clinical breast cancers based on MYC levels.
Although many estrogen receptor-positive (ER+) breast cancers are effectively treated with selective estrogen receptor modulators and down-regulators (SERM/SERD), some are highly resistant. Resistance is more likely if primary cancers are devoid of progesterone receptors (PR−) or have high levels of growth factor activity. In this study, a transgenic mouse line that expresses transforming growth factor-α (NRL-TGFα mice) and that develops ER+/PR− mammary tumors was used to assess the possible effects of (a) therapeutic delivery of the SERM, tamoxifen, or SERD, ICI I82,780 (ICI), on the growth of established tumors and (b) short-term prophylactic tamoxifen administration on the initial development of new mammary tumors. To determine the therapeutic effects of tamoxifen and ICI on the growth of established tumors, mice were exposed to 3 weeks of drug treatment. Neither drug influenced tumor growth or glandular pathology. To determine if early prophylactic tamoxifen could alter tumorigenesis, a 60-day tamoxifen treatment was initiated in 8-week-old mice. Compared with placebo-treated mice, tamoxifen reduced tumor incidence by 50% and significantly decreased the degree of mammary hyperplasia. Prophylactic tamoxifen also significantly extended the life span of tumor-free mice. These data show that in this mouse model, established ER+/PR− mammary tumors are resistant to SERM/SERD treatment but the development of new mammary tumors can be prevented by an early course of tamoxifen. This study validates the utility of NRL-TGFα mice for (a) identifying candidate biomarkers of efficacious tamoxifen chemoprevention and (b) modeling the evolution of tamoxifen resistance.The treatment and prevention of breast cancer has improved significantly due to the successful use of antiestrogens, more specifically known as selective estrogen receptor modulators (SERM) or down-regulators (SERD), and aromatase inhibitors. However, these drugs have proven to be effective only in clinical cases in which primary tumors express receptors for estrogen (ER+). Because ∼70% of all clinical breast cancer cases are ER+, the use of these antiestrogens has improved overall morbidity and mortality for a substantial number of patients.Unfortunately, not all breast cancer patients with ER+ disease benefit from such estrogen signaling manipulations. Approximately 30% of metastatic breast cancers are de novo resistant (1), and a majority that are initially sensitive develop resistance with time. This resistance is more frequent in ER+ tumors containing very low (or undetectable) levels of progesterone receptor (ER+/PR−) than in tumors containing higher progesterone receptor levels (ER+/PR+; ref. 2). In addition, in some circumstances in which growth factor and/or growth factor receptor levels are pronounced, treatment with growth factor inhibitors can improve the sensitivity of breast cancers to antiestrogen therapies and therefore promote the efficacy of such treatment (3), pointing to the importance of understanding the mechanisms underlying anti...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.